Project description:Clinical treatment protocols for infertility with in vitro fertilization-embryo transfer (IVF-ET) provide a unique opportunity to assess the human vaginal microbiome in defined hormonal milieu. Herein, we have investigated the association of circulating ovarian-derived estradiol (E2) and progesterone (P4) concentrations to the vaginal microbiome. Thirty IVF-ET patients were enrolled in this study, after informed consent. Blood was drawn at four time points during the IVF-ET procedure. In addition, if a pregnancy resulted, blood was drawn at 4-to-6 weeks of gestation. The serum concentrations of E2 and P4 were measured. Vaginal swabs were obtained in different hormonal milieu. Two independent genome-based technologies (and the second assayed in two different ways) were employed to identify the vaginal microbes. The vaginal microbiome underwent a transition with a decrease in E2 (and/or a decrease in P4). Novel bacteria were found in the vagina of 33% of the women undergoing IVF-ET. Our approach has enabled the discovery of novel, previously unidentified bacterial species in the human vagina in different hormonal milieu. While the relationship of hormone concentration and vaginal microbes was found to be complex, the data support a shift in the microbiome of the human vagina during IVF-ET therapy using standard protocols. The data also set the foundation for further studies examining correlations between IVF-ET outcome and the vaginal microbiome within a larger study population.
Project description:The goal of this study was to identify amylases that might be present in the vaginal fluid from four individual donors coming either from the microbiome or expressed by the human donors in these fluids. We collected cervicovaginal mucus from 4 donors, characterized the species composition of vaginal communities by genome sequencing. Samples were digested with trypsin, then analyzed by LC-MS/MS. Data was searched with MaxQuant and downstream data analysis was performed using RomicsProcessor.
Project description:Griffithsin (GRFT) is an anti-viral lectin with potent anti-HIV activity. GRFT’s preclinical safety, lack of systemic absorption after topical administration, and lack of cross-resistance with existing products prompted its development for topical HIV pre-exposure prophylaxis. We evaluated safety, pharmacokinetics and pharmacodynamics of PC-6500 (0.1% GRFT in a carrageenan (CG) gel) in healthy, HIV-negative, non-pregnant women following once daily vaginal gel administration for 14 days. No significant adverse events, histopathological changes in cervico-vaginal mucosa, or anti-drug (GRFT) antibodies were detected. No cervicovaginal proinflammatory responses and no changes in the ectocervical transcriptome were evident. Vaginal microbiome remained largely unchanged. Reduced abundance of vaginosis-associated bacteria and decreased levels of proinflammatory chemokines (CXCL8 and CCL20) were observed. GRFT was not detected in plasma. GRFT and GRFT/CG in CVLs dose-dependently inhibited HIV and HPV, respectively, in vitro. The data suggest GRFT/CG is a promising on-demand multipurpose prevention product that warrants further investigation.
Project description:<p>The pregnancy vaginal microbiome contributes to risk of preterm birth, the primary cause of death in children under 5 years of age. Here we describe direct on-swab metabolic profiling by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) for sample preparation-free characterisation of the cervicovaginal metabolome in two independent pregnancy cohorts (VMET, n = 160; 455 swabs; VMET II, n = 205; 573 swabs). By integrating metataxonomics and immune profiling data from matched samples, we show that specific metabolome signatures can be used to robustly predict simultaneously both the composition of the vaginal microbiome and host inflammatory status. In these patients, vaginal microbiota instability and innate immune activation, as predicted using DESI-MS, associated with preterm birth, including in women receiving cervical cerclage for preterm birth prevention. These findings highlight direct on-swab metabolic profiling by DESI-MS as an innovative approach for preterm birth risk stratification through rapid assessment of vaginal microbiota-host dynamics.</p><p><br></p><p><strong>Linked cross omic data sets:</strong></p><p>Meta-taxonomics data associated with this study are available in the European Nucleotide Archive (ENA): accession number <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB11895' rel='noopener noreferrer' target='_blank'>PRJEB11895</a>, <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB12577' rel='noopener noreferrer' target='_blank'>PRJEB12577</a> and <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB41427' rel='noopener noreferrer' target='_blank'>PRJEB41427</a>.</p>
2021-09-23 | MTBLS717 | MetaboLights
Project description:The vaginal microbiome sequencing data for PCOS patients
Project description:Bacterial vaginosis (BV) is characterized by depletion of Lactobacillus and overgrowth of anaerobic and facultative bacteria, leading to increased mucosal inflammation, epithelial disruption, and poor reproductive health outcomes. However, the molecular mediators contributing to vaginal epithelial dysfunction are poorly understood. Here we utilized proteomic, transcriptomic and metabolomic analyses to characterize biological features underlying BV in 405 African women and explored functional mechanisms using bacterial co-culturesin vitro. We identified five major vaginal microbiome groups, (L.crispatus(21%), L.iners(18%), any non-specific Lactobacillus species(9%), Gardnerella species .vaginalis(30%), or polymicrobial(22%)). Using multi-‘omics we show that BV associated epithelial disruption and mucosal inflammation are linked to the mammalian target of rapamycin (mTOR) pathway and associate with Gardnerella.vaginalis, M.mulieris, and specific metabolites including imidazole propionate. Bacterial co-culturesExperiments in vitro confirmed that type strain G.vaginalis and, M.mulieris supernatants and, as well as, and imidazole propionate, directly affect epithelial barrier function and , accompanied by activation of mTOR pathways. These results establish the microbiome-mTOR axis as a central feature of epithelial dysfunction in BV.
Project description:Bacterial vaginosis (BV) is characterized by depletion of Lactobacillus and overgrowth of anaerobic and facultative bacteria, leading to increased mucosal inflammation, epithelial disruption, and poor reproductive health outcomes. However, the molecular mediators contributing to vaginal epithelial dysfunction are poorly understood. Here we utilized proteomic, transcriptomic and metabolomic analyses to characterize biological features underlying BV in 405 African women and explored functional mechanisms using bacterial co-cultures in vitro. We identified five major vaginal microbiome groups, (L.crispatus(21%), L.iners(18%), any non-specific Lactobacillus species(9%), Gardnerella species .vaginalis(30%), or polymicrobial(22%)). Using multi-‘omics we show that BV associated epithelial disruption and mucosal inflammation are linked to the mammalian target of rapamycin (mTOR) pathway and associate with Gardnerella.vaginalis, Mobiluncus mulieris, and specific metabolites including imidazole propionate. Bacterial co-culture experiments in vitro confirmed that type strain G.vaginalis and, M.mulieris supernatants as well as imidazole propionate, directly affect epithelial barrier function and are accompanied by activation of mTOR pathways. These results establish the microbiome-mTOR axis as a central feature of epithelial dysfunction in BV.