Project description:Antimicrobial resistance (AMR) is a pandemic spread across multiple infectious disease microbes. To provide a new tool to study AMR, here we develop a Klebsiella pneumoniae cell-free gene expression (CFE) system. To characterise the system, we use proteomics to compare this to a Escherichia coli MG1655 CFE model, to identify relative differences and unique proteins. Then we use this native CFE system to profile antimicrobial activity in comparison to whole cell inhibition, to reveal host differences in IC50/MIC50 values. Finally, we use the CFE tool to study AMR variants, at a proof-of-concept level. As an exemplar, we show that RpoB H526L confers a 58-fold increase in CFE resistance to rifampicin – a common genotype frequently observed in rifampicin-resistant Mycobacterium tuberculosis clinical isolates. In summary, we provide a cell-free synthetic biology strategy for the profiling of antibiotic sensitivity and resistance from K. pneumoniae. While initial processing requires Biosafety Level 2, the final extracts are non-living and suitable for long-term storage, and potentially transfer to a Biosafety Level 1 lab. This bioassay has potential uses for early-stage host-specific antimicrobial development and the testing of AMR variants for structure-activity relationship studies. The data reposited is label-free high-resolution LC-MS proteomics data performed to characterise the proteins in cell-free extract of K. pneumoniae ATCC 13882 and compare to that of E. coli MG1655 to identify common and unique proteins. We also characterised the proteins of K. pneumoniae clinically resistant isolates ST258-T1b and NJST258-1, and compared them to K. pneumoniae ATCC 13882 laboratory strain.
Project description:Antimicrobial resistance (AMR) is a pandemic spread across multiple infectious disease microbes. To provide a new tool to study AMR, here we develop a Klebsiella pneumoniae cell-free gene expression (CFE) system. To characterise the system, we use proteomics to compare this to a Escherichia coli MG1655 CFE model, to identify relative differences and unique proteins. Then we use this native CFE system to profile antimicrobial activity in comparison to whole cell inhibition, to reveal host differences in IC50/MIC50 values. Finally, we use the CFE tool to study AMR variants, at a proof-of-concept level. As an exemplar, we show that RpoB H526L confers a 58-fold increase in CFE resistance to rifampicin – a common genotype frequently observed in rifampicin-resistant Mycobacterium tuberculosis clinical isolates. In summary, we provide a cell-free synthetic biology strategy for the profiling of antibiotic sensitivity and resistance from K. pneumoniae. While initial processing requires Biosafety Level 2, the final extracts are non-living and suitable for long-term storage, and potentially transfer to a Biosafety Level 1 lab. This bioassay has potential uses for early-stage host-specific antimicrobial development and the testing of AMR variants for structure-activity relationship studies. The data reposited is label-free high-resolution LC-MS proteomics data performed to characterise the proteins in cell-free extract of K. pneumoniae ATCC 13882 and compare to that of E. coli MG1655 to identify common and unique proteins. We also characterised the proteins of K. pneumoniae clinically resistant isolates ST258-T1b and NJST258-1, and compared them to K. pneumoniae ATCC 13882 laboratory strain.
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
Project description:Klebsiella pneumoniae is an antibiotic-resistant bacteria associated with severe infections, which has led to the search for new antimicrobial drugs to face these infections. Antimicrobial peptides (AMPs) are antimicrobials that exert anti-K. pneumoniae activity. Consequently, AMPs have been explored as a therapeutic option. However, similarly to other antimicrobials, K. pneumoniae can develop resistance against AMPs, although it is less frequent. Therefore, understanding the resistance mechanisms developed by K. pneumoniae against AMPs could aid in the design and development of more effective AMPs. This study aimed to identify via a label-free quantitative proteomic approach the resistance mechanisms involved in the resistance response of K. pneumoniae against the AMP PaDBS1R1.
2024-01-26 | PXD033020 | Pride
Project description:Genome based study of antimicrobial resistance (AMR) in Enterobacteriaceae family.
Project description:The emergence and spread of polymyxin resistance, especially among Klebsiella pneumoniae isolates threaten the effective management of infections. This study profiled for polymyxin resistance mechanisms and investigated the activity of polymyxins plus vancomycin against carbapenem- and polymyxin-resistant K. pneumoniae.
Project description:Conjugative plasmids are the main vehicle for the horizontal spread of antimicrobial resistance (AMR). Although AMR plasmids provide advantages to their hosts under antibiotic pressure, they can also disrupt the cell’s regulatory network, impacting the fitness of their hosts. Despite the importance of plasmid-bacteria interactions on the evolution of AMR, the effects of plasmid carriage on host physiology has remained underexplored, and most studies have focused on model bacteria and plasmids that lack clinical relevance. Here, we analyzed the transcriptional response of 11 clinical enterobacterial strains (2 Escherichia coli, 1 Citrobacter freundii and 8 Klebsiella spp.) and the laboratory-adapted E. coli MG1655 to carriage of pOXA-48, one of the most widely spread carbapenem-resistance plasmids. Our analyses revealed that pOXA-48 produces variable responses on their hosts, but commonly affects processes related to metabolism, transport, response to stimulus, cellular organization and motility. More notably, the presence of pOXA-48 caused an increase in the expression of a small chromosomal operon of unknown function in Klebsiella spp. and C. freundii, which is not present in E. coli. Phylogenetic analysis suggested that this operon has been horizontally mobilized across different Proteobacteria species. We demonstrate that a pOXA-48-encoded LysR transcriptional regulator controls the expression of the operon in Klebsiella spp. and C. freundii. In summary, our results highlight a crosstalk between pOXA-48 and the chromosome of its natural hosts.
Project description:With the global increase in the use of carbapenems, several gram-negative bacteria have acquired carbapenem resistance, thereby limiting treatment options. Klebsiella pneumoniae is one of such notorious pathogen that is being widely studied to find novel resistance mechanisms and drug targets. These antibiotic-resistant clinical isolates generally harbor many genetic alterations, and identification of causal mutations will provide insights into the molecular mechanisms of antibiotic resistance. We propose a method to prioritize mutated genes responsible for antibiotic resistance, in which mutated genes that also show significant expression changes among their functionally coupled genes become more likely candidates. For network-based analyses, we developed a genome-scale co-functional network of K. pneumoniae genes, KlebNet (www.inetbio.org/klebnet). Using KlebNet, we could reconstruct functional modules for antibiotic-resistance, and virulence, and retrieved functional association between them. With complementation assays with top candidate genes, we could validate a gene for negative regulation of meropenem resistance and four genes for positive regulation of virulence in Galleria mellonella larvae. Therefore, our study demonstrated the feasibility of network-based identification of genes required for antimicrobial resistance and virulence of human pathogenic bacteria with genomic and transcriptomic profiles from antibiotic-resistant clinical isolates.
Project description:Antimicrobial resistance (AMR) is one of the major challenges that humans are facing this century. Understanding the mechanisms behind the rise of AMR is crucial to tackle this global threat. Among the triggers of phenotypic antimicrobial resistance, the contribution of transition metals has been understudied in Mycobacterium abscessus (Mabs), a fast-growing non-tuberculous mycobacterium known for its extreme AMR levels. Deeper understanding of the effects of transition metal ions will be beneficial for our knowledge in AMR and the discovery of potential therapeutic targets. Here, we investigated the impact of transition metal ions, nickel, cobalt and copper on the physiology and drug susceptibility of Mabs.
Project description:To investigate the whole-genome gene expression difference between the wild-type and capsule deletion mutant in Klebsiella pneumoniae MGH 78578. The mutants analyzed in this study are further described in Huang T.W., Stapleton J.C., Chang H.Y., Tsai S.F., Palsson B.O., Charusanti P. Capsule removal via lambda-Red knockout system perturbs biofilm formation and fimbriae extression in Klesiella pneumoniae MGH 78578 (manuscript submission) A six chip study using total RNA recovered from three separate wild-type cultures and three separate cultures of a capsule deltion mutant of Klebsiella pneumoniae MGH 78578. The capsule gene cluster (KPN_02493 to KPN_02515) was entirely removed in the capsule deletion mutant. Each chip measures the expression level of 5,305 genes from Klebsiella pneumoniae MGH 78578 and the associated five plasmids (pKPN3, pKPN4, pKPN5, pKPN6 and pKPN7) with 50-mer oligo tiling array with 30-mer spacer.