Project description:Interventions: CRC group:Nil;Healthy control group:Nil
Primary outcome(s): Identification of clostridium species
Study Design: Factorial
Project description:Interventions: Tumor tissue group and tumor-adjacent tissue group:Nil
Primary outcome(s): Identification of clostridium species
Study Design: Factorial
| 2696605 | ecrin-mdr-crc
Project description:Identification and characterization of novel small RNA species sdRNA
Project description:Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warm temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of small RNAs that change their pattern of expression in apple buds during dormancy.
2021-11-30 | GSE189658 | GEO
Project description:Identification of key genes involved in abiraterone resistance by GeCKO scaning
Project description:miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or by inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance without previous studies about its gene expression and regulation. To date, there is not miRNAs reported in species of Myrtaceae. A small RNA library was constructed to identify miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library and the data obtained was analysed using bioinformatics tools. From 14,489,131 clean reads, we obtained 1,852,722 small RNAs representing 45 known miRNA families that have been identified in other plant species. Further analysis using contigs assembled from Illumina mRNA sequencing of leaves from the same individual allowed the prediction of secondary structures of 25 known and 17 novel miRNAs. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study provide the first large scale identification of miRNAs and their potential targets of a species from Myrtaceae without previous genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights the miRNAs species-specific.