Project description:To define the skeletal muscle adaptations induced by exercise performed at high altitude hypoxia, we investigated if the gene expression profile of Vastus lateralis muscle was affected by 5000 m-above-sl-expedition. Two-condition experiment, Vastus lateralis muscle biopsy post-expedition vs Vastus lateralis muscle biopsy pre-expedition. Five volunteers/climbers. Biological replicates: 1 pre-expedition sample, 1 post-expedition sample.
Project description:Alternative splicing (AS) generates isoform diversity critical for cellular identity and homeostasis, yet characterization of this diversity in single cells remains limited. We developed Expedition, a computational framework to categorize and visualize the heterogeneity of AS from single-cell transcriptomes. Expedition consists of (i) outrigger, a de novo splice graph transversal algorithm to detect AS from single cell RNA-seq; (ii) anchor, a Bayesian approach to assign splicing modalities and (iii) bonvoyage, using non-negative matrix factorization to visualize modality changes. By applying Expedition to single iPSCs undergoing neuron differentiation, we discover that 25% of AS exons exhibit bimodality and are flanked by longer and more conserved introns harboring distinct cis-regulatory motifs. Bimodal exons are highly dynamic during cellular transitions, preserve translatability, enriched in recently emerged genes and have conserved AS in mammals. Applying Expedition (http://github.com/YeoLab/Expedition) in single cells redefines our estimates and understanding of AS in evolution and biology.
Project description:To define the skeletal muscle adaptations induced by exercise performed at high altitude hypoxia, we investigated if the gene expression profile of Vastus lateralis muscle was affected by 5000 m-above-sl-expedition.
Project description:This dataset consists of 20 metaproteomic analyses of the Western Atlantic Ocean aboard the R/V Knorr KN210-04 DeepDOM expedition in 2013. Samples were collected by McLane pumps on GFF or GF75 filters, split, and frozen until analyses. Expedition metadata and co-sampled datasets are available at: https://www.bco-dmo.org/deployment/59057
Project description:Orangutans are an endangered species whose natural habitats are restricted to the Southeast Asian islands of Borneo and Sumatra. For potential species conservation and functional genomics studies, we derived induced pluripotent stem cells (iPSCs) from cryopreserved skin fibroblasts obtained from captive orangutans. We report the gene expression profiles of iPSCs and skin fibroblasts derived from orangtuans.
Project description:In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. Overall design: Adults wild type and dystrophic flies (3-5 days old) were exposed to hypobaric hypoxia for two weeks during the summer expedition to Mount McKinley, Alaska (6194 MASL). Another set of wild types and dystrophic flies were exposed to normobaric hypoxia according to the table I obtained during the climbing expedition. During the expedition, the flies were maintained in vials with regular molasses and covered by thermo isolation to avoid low temperature, keeping the temperature at 25C. The experiment performed in the laboratory also used vials with regular molasses and at 25C. Table I. Expedition log book for mount McKinley ascent. Information obtained during the ascent and summit of Mount McKinley, June 1st to June 16th of 2007. The oxygen pressure (PO2) was calculated from the barometric pressure. GNB means go and back from the mentioned point. DAY In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. Overall design: Adults wild type and dystrophic flies (3-5 days old) were exposed to hypobaric hypoxia for two weeks during the summer expedition to Mount McKinley, Alaska (6194 MASL). Another set of wild types and dystrophic flies were exposed to normobaric hypoxia according to the table I obtained during the climbing expedition. During the expedition, the flies were maintained in vials with regular molasses and covered by thermo isolation to avoid low temperature, keeping the temperature at 25C. The experiment performed in the laboratory also used vials with regular molasses and at 25C. Table I. Expedition log book for mount McKinley ascent. Information obtained during the ascent and summit of Mount McKinley, June 1st to June 16th of 2007. The oxygen pressure (PO2) was calculated from the barometric pressure. GNB means go and back from the mentioned point. DAY LOCATION ALTITUDE m PO2 mmHg (%) 1 Base Camp 2200 123.6 (16.3%) 2 Base Camp 2200 123.6 (16.3%) 3 Base Camp 2200 123.6 (16.3%) 4 Ski Hill 2400 120.7 (15.9%) 5 Kahiltna Pass 2950 113.0 (14.9%) 6 Motorcycle Hill 3350 107.7 (14.2%) 7 Motorcycle Hill 3350 107.7 (14.2%) 8 GNB from Motorcycle 4150 (5 hours) 97.7 (12.9%) 9 Medical Camp 4350 95.3 (12.5%) 10 GNB from Medical Camp 4150 (5 hours) 97.7 (12.9%) 11 Medical Camp 4350 95.3 (12.5%) 12 GNB from Medical Camp 4900 89.0 (11.7%) 13 Medical Camp 4350 95.3 (12.5%) 14 High Camp 5250 85.1 (11.2%) 15 Summit 6194 (0.3 hours) 75.4 (9.9%) 16 High Camp 5250 85.1 (11.2%)