Project description:Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to 2.5 ppm of PAA was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed genes, of which 9 were up-regulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and 3 were down-regulated (argG, lmo0604, lmo2156) in PAA treated samples compared to the control samples. A non-coding small RNA (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as this response can be induced in food-processing environments, as a result of inadequate rinsing during the disinfection process, that lead to PAA residues at low concentrations.
Project description:Survival of the foodborne pathogen Listeria monocytogenes in acidic environments (e.g., stomach and low pH foods) is vital to its transmission. L. monocytogenes grows at temperatures as low as 2°C, and refrigerated, ready-to-eat foods have been sources of L. monocytogenes outbreaks. The purpose of this study was to determine whether growth at a low temperature (i.e., 7°C) affects the response of L. monocytogenes to sudden acid shock.
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator HrcA, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DhrcA stationary phase cells were compared to wt to identify hrcA-dependent genes. We identified 61 HrcA-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression between ΔhrcA and wt. Combined with microarray analysis, Hidden Markov Model searches show HrcA directly repress at least 8 genes. Keywords: Listeria monocytogenes, HrcA regulon, stationary phase
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator CtsR, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DctsR log phase cells were compared to both wt and ictsR-mcsA log phase cells grown with 0.5mM IPTG to identify CtsR-dependent genes.We identified 62 CtsR-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression either between ΔctsR and wt or between ΔctsR and ictsR-mcsA. Keywords: Listeria monocytogenes, CtsR regulon, log phase
Project description:Listeria monocytogenes strain 10403S has been studied extensively for stress response activity toward multiple stressors (acid, osmotic, cold, high temperature, etc.) as well as multiple stress regulons (SigB, CtsR, HrcA, etc.). Here we aimed to determine the transcriptional response of Listeria monocytogenes in early log phase towards the strong oxidative stress imposed by ClO2. The elucidation of such a response allows for further a more completel understanding of the mechanism of inactivation by sanitizers, specifically ClO2.