Project description:The microbial consortium associated with sandflies has gained relevance, with its composition shifting throughout distinct developmental stages, being strongly influenced by the surroundings and food sources. The bacterial components of the microbiota can interfere with Leishmania development inside the sandfly vector. Microbiota diversity and host-microbiota-pathogen interactions regarding New World sandfly species have yet to be thoroughly studied, particularly in Lutzomyia longipalpis, the primary vector of visceral leishmaniasis in Brazil.The native microbiota of different developmental stages and physiological conditions of Lu. longipalpis (Lapinha Cave), was described by culturing and 16s rRNA gene sequencing. The 16s rRNA sequencing of culture-dependent revealed 13 distinct bacterial genera (Bacillus, Enterococcus, Erwinia, Enterobacter, Escherichia, Klebsiella, Lysinibacillus, Pseudocitrobacter, Providencia, Pseudomonas, Serratia, Staphylococcus and Solibacillus). The in vitro and in vivo effects of each one of the 13 native bacteria from the Lu. longipalpis were analyzed by co-cultivation with promastigotes of L.i. chagasi, L. major, L. amazonensis, and L. braziliensis. After 24 h of co-cultivation, a growth reduction observed in all parasite species. When the parasites were co-cultivated with Lysinibacillus, all parasites of L. infantum chagasi and L. amazonensis died within 24 hours. In the in vivo co-infection of L.chagasi, L. major and L. amazonensis with the genera Lysinibacillus, Pseudocitrobacter and Serratia it was possible to observe a significant difference between the groups co-infected with the bacterial genera and the control group.These findings suggest that symbiont bacteria (Lysinibacillus, Serratia, and Pseudocitrobacter) are potential candidates for paratransgenic or biological control. Further studies are needed to identify the nature of the effector molecules involved in reducing the vector competence for Leishmania.
Project description:Lutzomyia longipalpis, a sand fly, is a vector-spreading pathogenic protozoan in the New World. MicroRNA (miRNA) is evolutionarily-conserved non-coding RNA, which plays critical roles in various biological processes. To date, the functions of most proteins in L. longipalpis are unknown, and few studies have addressed the roles of miRNAs in this species. In the present study, we re-annotated the protein-coding genes and identified several miRNAs using a set of comparative genomics tools. A large number of L. longipalpis proteins were found to be homologous with those in the mosquito genome, indicating that they may have experienced similar selective pressures. Among these proteins, a set of 19 putative salivary proteins were identified, which could be used for studying the transmission of Leishmania. Twenty-one novel miRNAs were characterized, including two miRNAs, miR-4113-5p and miR-5101, which are unique to L. longipalpis. Many of the targets of these two genes were found to be involved in ATP hydrolysis-coupled proton transport, suggesting that they may have important roles in the physiology of energy production. Topology analysis of the miRNA-gene network indicated that miR-9388-5p and miR-3871-5p regulate several critical genes in response to disease development. In conclusion, our work provides a basis for improving the genome annotation of L. longipalpis, and opens a new door to understanding the molecular regulatory mechanisms in this species.
Project description:Leishmaniasis is a neglected vector-borne disease with a global prevalence of over 12 million cases and 59,000 annual deaths. Transmission of the parasite requires salivary proteins, including LJL143 from the New World sandfly Lutzomyia longipalpis. LJL143 is a known marker of sandfly exposure in zoonotic hosts. LJL143 was crystallized from soluble protein expressed using Pichia pastoris. X-ray data were collected to 2.6?Å resolution from orthorhombic crystals belonging to space group P2(1)2(1)2(1), with average unit-cell parameters a = 57.39, b = 70.24, c = 79.58?Å. The crystals are predicted to have a monomer in the asymmetric unit, with an estimated solvent content of 48.5%. LJL143 has negligible homology to any reported structures, so the phases could not be determined by molecular replacement. All attempts at S-SAD failed and future studies include experimental phase determination using heavy-atom derivatives.
Project description:It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex.We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps).The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies.