Project description:Here we apply integrated epigenomic and transcriptomic profiling to uncover super-enhancer heterogeneity between breast cancer subtypes, and provide clinically relevant biological insights towards TNBC. Using CRISPR/Cas9-mediated gene editing, we identify genes that are specifically regulated by TNBC-specific super-enhancers, including FOXC1 and MET, thereby unveiling a mechanism for specific overexpression of the key oncogenes in TNBC. We also identify ANLN as a novel TNBC-specific gene regulated by super-enhancer. Our studies reveal a TNBC-specific epigenomic landscape, contributing to the dysregulated oncogene expression in breast tumorigenesis.
Project description:Despite the development of diagnostic and advanced treatment strategies, the prognosis of patients with osteosarcoma remains poor. A limited understanding of the pathogenesis of osteosarcomas has impeded any improvement in patient outcomes over the past 4 decades. It is thus urgent to identify novel effective targets and treatment regimens for osteosarcoma patients. In this study we delineated the super-enhancer landscape in osteosarcoma cells on the basis of H3K27ac signal intensity by ChIP-Seq and found that super-enhancer-associated genes contribute to the malignant potential of osteosarcoma. THZ2, a novel small molecular inhibitor, shows a powerful anti-osteosarcoma ability through suppress super-enhancer-associated genes selectively. Utilizing the characteristics of super-enhancers in cancer cells, we identified 5 critical super-enhancer-associated oncogenes. With the comparative and retrospective analysis in large numbers of human specimens from patients, these 5 oncogenes were observed closely related with patient prognosis. Our findings determined that targeting super-enhancer-associated oncogenes with transcriptional inhibitor, THZ2, was a promising therapeutic strategy in osteosarcoma, and provided novel candidate targets for patients with osteosarcoma.
Project description:Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.
Project description:Small cell carcinoma of the ovary-hypercalcemic type (SCCOHT) is a rare form of ovarian cancer affecting young women and girls. Survival rates remain poor despite aggressive treatment of these patients with high-dose chemotherapy and radiation. SCCOHT is driven by loss of both SWI/SNF ATPases SMARCA4 and SMARCA2. Loss of SWI/SNF complex activity alters chromatin state, particularly at enhancers, which is believed to be crucial for oncogenesis. Super-enhancers are a distinct subset of enhancer clusters frequently associated with oncogenes in cancer. Here we discovered key distinctions between SWI/SNF binding following SMARCA4 restoration at enhancer vs. super-enhancer sites and characterized putative oncogene expression driven by super-enhancer activity. We found high sensitivity of SCCOHT cell lines to triptolide, a small molecule derived from the naturally occurring "thunder god vine" (Tripterygium wilfordii) that targets the XPB subunit of the transcription factor II H (TFIIH) complex, found at super-enhancers. Triptolide inhibits expression of many super-enhancer associated genes, and in particular, oncogenes. Notably, SALL4 expression, which is high in SCCOHT relative to other ovarian cancers and normal cell types, is significantly decreased following short triptolide treatment. In SCCOHT patient-derived xenograft models, triptolide and its prodrug derivative minnelide are particularly effective in inhibiting tumor growth. These results demonstrate the key oncogenic role of super-enhancer activity following epigenetic dysfunction in SCCOHT, which can be effectively targeted through inhibition of its functional components, such as TFIIH inhibition with triptolide.
Project description:Bromodomain-containing protein 4 (BRD4) functions as an epigenetic reader and binds to so-called super-enhancer regions of driving oncogenes such as MYC in cancer. We investigated the possibility to target super-enhancer regulated genes in neuroblastoma and in MYCN amplified disease in particular. We used OTX015, the first small-molecule BRD4 inhibitor to enter clinical phase I/II trials in adults, to test the feasibility to specifically target super-enhancer regulated gene-expression in neuroblastoma. BRD4 inhibition lead to significant transcriptional down-regulation of genes that were associated with super-enhancers, supporting the notion that BRD4 preferentially acts at these chromatin sites. BRD4 inhibition not only attenuated MYCN transcription but most significantly affected MYCN-regulated transcriptional programs.
Project description:As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.
Project description:Many key oncogenes have been reported to be driven by super-enhancers. To explore novel oncogenes, ChIP-seq for H3K27ac profiling and super-enhancer analysis was conducted in T-ALL cells.
Project description:Studying the dynamics of three-dimensional (3D) chromatin structure is essential to the understanding of biological processes in the nucleus. Integrative analysis of multi-omics data in recent publications have provided comprehensive and multilevel insight into 3D genome organization emphasizing its role for transcriptional regulation. While enhancers are regulatory elements that play a central role in the spatiotemporal control of gene expression, chromatin looping has been broadly accepted as a means for enhancer-promoter interactions yieldingcell-type-specific gene expression signatures. On the other hand, G-quadruplexes (G4s) are non-canonical DNA secondary structures that are enriched at promoters and related to increased gene expression, both. A role for G4s in promoter-distal regulatory elements, such as super-enhancers (SE), as well as in 3D genome organization and chromatin looping mediating long-range enhancer-promoter interactions has, however, remained elusive. Here we show that mature microRNA 9 (miR-9) is enriched at promoters and SE of genes that are inducible by tissue growth factor beta 1 (TGFB1) signaling. Further, we find that nuclear miR-9 is required for chromatin features related to increased transcriptional activity, such as broad domains of the euchromatin histone mark H3K4me3 (histone 3 tri-methylated lysine 4) and G4s. Moreover, we show that nuclear miR-9 is required for promoter-super-enhancer looping. Our study places a nuclear microRNA in the same structural and functional context with G4s and promoter-enhancer interactions during 3D genome organization and transcriptional activation induced by TGFB1 signaling, a critical regulator of proliferation programs in cancer and fibrosis.