Project description:Bud endodormancy induction response of two genotypes (Seyval, a hybrid white wine grape and Vitis riparia, PI588259, a native North American grape species) was compared under long (15 h) and short (13 h) photoperiods. Proteins were extracted from both genotypes for all time points and experimental conditions. The proteins were separaed by 2D-PAGE, trypsin digested, and the peptides identified with a MALDI-TOF-TOF mass spectrometer. A master gel was made and mapped with all proteins from both genotypes. The proteins were identified by matching the peptide sequences against the 8X Vitis vinifera grape genome in NCBI. This study was funded by NSF grant DBI064755 and is the result of a collaboration between Dr. Anne Fennell at South Dakota State University and Dr. Grant R. Cramer at the University of Nevada, Reno.
Project description:Protein expression from berry skin of four different red grape biotypes was compared at a proteome-wide level by bottom-up shotgun proteomics, label free quantification and MaxQuant-assisted computational analysis. Red grapes were from a purebred Vitis vinifera (Aglianico cv.), a V. vinifera (local Sciascinoso cv.) grafted onto an American rootstock, an interspecific hybrid (V. vinifera × V. labrusca, Isabel) and an uncharacterized red grape with some hybrid lineage, as demonstrated by the presence of relatively high amounts of anthocyanidin 3,5-O-diglucosides. The aim was assessing the differences among red grape biotypes at a protein expression levels, also addressing the possible effect of the grafting on the phenotypic expression of some key metabolic enzymes in grape berries.
Project description:We measured transcriptional profiles of individuals of Andropogon gerardii and Sorghastrum nutans, two C4 grass species native to North American grasslands, in a field experiment in which both temperature and precipitation have been manipulated to simulate key aspects of forecasted climate change.
Project description:To study the population genetics context of the Saqqaq individual we carried out Illumina Bead-Array-based genotyping on four native North American and twelve north Asian populations.
Project description:We measured transcriptional profiles of individuals of Andropogon gerardii and Sorghastrum nutans, two C4 grass species native to North American grasslands, in a field experiment in which both temperature and precipitation have been manipulated to simulate key aspects of forecasted climate change. 99 samples were analyzed.
Project description:MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length. Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance in the Vitis genus and is used as an excellent breeding parent for grapevine, and with growing interest in terms of wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. In this study, a small RNA library from Amur grapes was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNA belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grapevine-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, accumulation of 18 new va-miRNAs in seven tissues of grapevines were also confirmed by real time RT-PCR (qRT-PCR) analysis, and expression levels of va-miRNAs in flowers and berries were basically consistent in identity to those from deep sequenced sRNAs libraries of independent corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and revealed the number and sites of miR-SNP of diverse miRNA families exhibited distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grapevine stress tolerance genes and many genes regulating anthocyanin systhesis and sugar metabolism. Deep sequencing of short RNAs from Amur grapes flowers and fruits identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grapes. These results show that a number of regulatory miRNAs exist in Amur grapes and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
Project description:MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length. Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance in the Vitis genus and is used as an excellent breeding parent for grapevine, and with growing interest in terms of wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. In this study, a small RNA library from Amur grapes was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNA belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grapevine-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, accumulation of 18 new va-miRNAs in seven tissues of grapevines were also confirmed by real time RT-PCR (qRT-PCR) analysis, and expression levels of va-miRNAs in flowers and berries were basically consistent in identity to those from deep sequenced sRNAs libraries of independent corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and revealed the number and sites of miR-SNP of diverse miRNA families exhibited distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grapevine stress tolerance genes and many genes regulating anthocyanin systhesis and sugar metabolism. Deep sequencing of short RNAs from Amur grapes flowers and fruits identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grapes. These results show that a number of regulatory miRNAs exist in Amur grapes and play an important role in Amur grape growth, development, and response to abiotic or biotic stress. High throughput sequencing was employed to identify miRNAs in Amur grapevine and try to describe their functions in Amur grapevine growth and development.
Project description:We measured transcriptional profiles of individuals of Andropogon gerardii, a C4 grass native to North American grasslands, in a field experiment in which both temperature and precipitation have been manipulated to simulate key aspects of forecasted climate change.
Project description:We measured transcriptional profiles of individuals of Andropogon gerardii, a C4 grass native to North American grasslands, in a field experiment in which both temperature and precipitation have been manipulated to simulate key aspects of forecasted climate change. By using microarrays developed for a closely related model species, Zea mays, we were able to compare the relative influence of warming versus altered soil moisture availability on expression levels of over 7,000 genes. The plants were located in 12 experimental plots under rainout shelters on the Konza Prairie Biological Station in Manhattan, Kansas.