Project description:Gene expression profile at 1hr after common bile duct ligation. Hybridization was carried out four times including color swap to eliminate any dye bias. Keywords: repeat sample
Project description:Gene expression profile at 12hr after common bile duct ligation. Hybridization was carried out four times including color swap to eliminate any dye bias. Keywords: repeat sample
Project description:Gene expression profile at 3hr after common bile duct ligation. Hybridization was carried out four times including color swap to eliminate any dye bias. Keywords: repeat sample
Project description:The aim is to characterize rat liver fibrosis induced by bile duct ligation (BDL). To induce hepatic fibrosis, Male Sprague Dawley rats (9-12 weeks of age and 380-420 g of weight upon arrival, supplied by Beijing Vital River laboratory animal Co., Ltd.) underwent surgery of bile duct ligation (BDL). The bile ducts of Sprague-Dawley rats were ligated after 12 hours of fasting and water deprivation. Rat liver samples were collected from three groups of rats at week 1, 2 and 5 after BDL surgery. Three control groups of rats underwent sham operation, including bile duct mobilization, but without BDL. Three biological replicates were used for each group.
Project description:Hepatic fibrosis, the wound-healing response to repeated liver injury, ultimately leads to cirrhosis. There is an urgent need to develop effective antifibrotic therapies. Ghrelin (encoded by Ghrl) is an orexigenic hormone that has pleiotrophic functions including protection against cell death1. Here we investigate whether ghrelin modulates liver fibrosis and protects from acute liver injury. Recombinant ghrelin reduced the fibrogenic response to prolonged bile duct ligation in rats. This effect was associated with decreased liver injury and myofibroblast accumulation as well as attenuation of the altered gene expression profile. Ghrelin also reduced fibrogenic properties in cultured hepatic stellate cells. Moreover, Ghrl-/- mice developed exacerbated hepatic fibrosis and liver damage after chronic injury. Ghrelin also protected rat livers from acute liver injury and reduced the extent of oxidative stress and the inflammatory response. In patients with chronic liver diseases, ghrelin serum levels decreased in those with advanced fibrosis and hepatic expression of the ghrelin gene correlated with expression of fibrogenic genes. Finally, in patients with chronic hepatitis C, single nucleotide polymorphisms of the ghrelin gene (-994CT and â604GA) influenced the progression of liver fibrosis. We conclude that ghrelin exerts antifibrotic effects on the liver and may represent a novel antifibrotic therapy. Experiment Overall Design: Rats were divided into three groups: control rats receiving saline (sham operation), rats with bile duct ligation receiving saline and rats with bile duct ligation receiving recombinant ghrelin (10 micrograms/Kg/day by a subcutaneous osmotic mimi-pump). For the microarray analysis samples from 6 rats were analyzed except for the ghrelin-treated group (5 rats).
Project description:Dynamic changes in growth factor expression is observed after bile duct ligation at different time points compared to sham-treated mice, corresponding to increase in biliary cell proliferation and repair
Project description:Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. If a mouse model of hepatopulmonary syndrome (HPS) could be established, greater insight into the genetic basis of the disease would be gained. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL) and to investigate pulmonary pathogenesis for application in future therapeutic approaches. Balb/c mice were subjected to CBDL. Immunohistochemical analyses and real-time quantitative reverse transcriptional polymerase chain reaction were performed on pulmonary tissues. The presence of HPS markers were detected by western blot and microarray analyses. We observed extensive proliferation of CD31-positive pulmonary vascular endothelial cells 2 weeks after CBDL, and identified 11 up-regulated and 8 down-regulated proteins that were associated with angiogenesis. MMP-9 protein was highly expressed at 3 weeks after CBDL, and less expressed in lungs of the control group. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase; thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and MOD syndrome. After induction of anesthesia, a median abdominal incision was made and the common bile duct was identified. The duct was dissected carefully under a microscope, and doubly ligated with 7-0 Prolene and transected. In the sham operation (control) group, the duct was dissected without common bile duct ligation. Mice were sacrificed at 2 and 3 weeks after surgery. CD31-positive cells were assembled from three mice in each group.
Project description:Effect of bile duct ligation on growth factors expression from mouse whole extrahepatic bile duct (EHBD) tissue and cultured mouse neonatal fibroblasts and bile duct organoids
Project description:The HGF/c-Met system is an essential inducer of hepatocyte growth and proliferation. Although a fundamental role for the HGF receptor c-Met has been demonstrated in acute liver regeneration its cell specific role in hepatocytes during chronic liver injury and fibrosis progression has not been determined yet. In order to better characterize the role of c-Met in hepatocytes we generated a hepatocyte-specific c-Met knockout mouse (c-MetM-bM-^HM-^Fhepa) using the Cre-loxP system and studied its relevance after bile-duct ligation. Two strategies for c-Met deletion in hepatocytes were tested. Early deletion during embryonic development was lethal, while post-natal Cre-expression was successful leading to the generation of viable c-MetM-bM-^HM-^Fhepa mice. Bile-duct ligation in these mice resulted in extensive necrosis and lower proliferation rates of hepatocytes. Gene array analysis of c-MetM-bM-^HM-^Fhepa mice revealed a significant reduction of anti-apoptotic genes in c-Met deleted hepatocytes. These findings could be functionally tested as c-MetM-bM-^HM-^Fhepa mice showed a stronger apoptotic response after bile-duct ligation and Jo-2 stimulation. This phenotype was associated with increased expression of pro-inflammatory cytokines (TNF-a and IL-6) and an enhanced recruitment of neutrophils. Activation of these mechanisms triggered a stronger pro-fibrogenic response as evidenced by increased TGF-b1, a-SMA, collagen-1a mRNA expression and enhanced collagen-fiber staining in c-MetM-bM-^HM-^Fhepa mice. For gene array analysis c-MetDhepa and c-MetloxP/loxP controls were stimulated for 2 hours with 2M-BM-5g recombinant mouse HGF.Three animals per group were treated in parallel, before and after i.p. injection of recombinant HGF or NaCl.