Project description:The genus Eristalinus is widely distributed globally. Four complete mitochondrial genomes (i.e., mitogenomes) of Eristalinus were sequenced and analyzed in this study: Eristalinus viridis (Coquillett, 1898), E. quinquestriatus (Fabricius, 1781), E. tarsalis (Macquart, 1855), and E. sp. Within these four sequenced mitogenomes, most protein-coding genes (ND2, CO1, COX2, COX3, ND3, ND5, ND4, ND4L, ND6, and Cytb) began with a typical ATN (T/C/G/A) start codon and ended with a stop codon TAA or incomplete T, whereas ND1 began with the start codon TTG. ND3 ended with TAG. The secondary tRNA structure was that of a typical cloverleaf, and only the tRNA-Ser1 lacked a DHU arm. Three and five domains appeared in the 12S and 16S rRNA secondary structures, respectively. The phylogenetic relationships among the four Eristalinus species combined with the published mitogenomes of Syrphidae were reconstructed using the maximum likelihood and Bayesian inference methods, which support the monophyly of the subfamily Syrphinae but do not support that of the subfamily Eristalinae. Of note, Eristalini and Syrphini are monophyletic groups. The mitogenomes of E. viridis, E. quinquestriatus, E. sp., and E. tarsalis are useful for determining the phylogenetic relationships and evolution of Syrphidae.
Project description:Watermelon (Citrullus lanatus) is an important crop worldwide. Pollination of this crop is carried out by insects, with honey bees (Apis spp.) and bumble bees (Bombus spp.) as the most used in greenhouse production. Nevertheless, due to the extreme conditions in closed enclosures, these hymenopterans suffer management and behavior problems leading to insufficient pollination. The effectiveness of three release densities (15, 30, and 45 individuals/m2) of Eristalinus aeneus was compared in diploid- and triploid-associated watermelon varieties under protected cultivation. Floral visits, pollen-pistil interaction after pollen transport, yield, and fruit quality were evaluated. The number of floral visits increased with release density in both pistillate and staminate flowers. No significant differences were observed, however, among release densities or between flower types in the duration of the visits. Floral preferences were not found in the behavior of E. aeneus in watermelon. High and medium release densities increased pollen deposition onto the stigma, and consequently the yield of the triploid variety compared to low release density, by 23.8 to 41.8% in 2020 and by 36.3 to 46.7% in 2021. The results of this trial demonstrate the potential of E. aeneus as a managed pollinator in protected cultivation of triploid watermelon.