Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.
Project description:Comparative hybridization analysis Microarray-based genomic hybridization was used here as a high-throughput analog to traditional southern hybridization, which is the classical standard method for detecting specific DNA fragments in a genome.
Project description:Expression profiling of wild-type and Prdm1 null mouse trophoblast giant cell cultures using Illumina whole genome mouse V2 arrays. The hypothesis tested was that Prdm1/Blimp1 regulates expression of genes required for spiral artery trophoblast giant cell function.
Project description:Here we present genome-wide high-coverage genotyping data on a panel of 75 human samples from Western Balkan region, Europe, that are used in addition to public data in studing the genetic variation of Southern Europe that was sequenced to the avwerage depth of 1X.