Project description:To study the spatial localisations of the cell populations in an early haematopoietic tissue and lymphoid organs critical for T and B cell development, we profiled fetal liver, thymus and spleen from 3 donors at 18 PCW with sequencing-based spatial transcriptomics (10x Genomics Visium).
Project description:These data were used in the spatial transcriptomics analysis of the article titled \\"Single-Cell and Spatial Transcriptomics Analysis of Human Adrenal Aging\\".
Project description:Spatial organization of different cell types within prenatal skin across various anatomical sites is not well understood. To address this, here we have generated spatial transcriptomics data from prenatal facial and abdominal skin obtained from a donor at 10 post conception weeks. This in combination with our prenatal skin scRNA-seq dataset has helped us map the location of various identified cell types.
Project description:These samples are part of a study to provide a spatially resolved single-cell multiomics map of human trophoblast differentiation in early pregnancy. Here we profiled with 10x Visium Spatial transcriptomics of the entire maternal-fetal interface including the myometrium, allowing us to resolve the full trajectory of trophoblast differentiation.
Project description:To fully parse the spatial characteristics of NAFLD liver, we combined spatial transcriptomics (ST), which allowed us to characterize spatial position information within the tissue
Project description:Identification of cell types in the interphase between muscle and tendon by Visium Spatial Transcriptomics of four human semitendinous muscle-tendon biopsies. Cell types identified by single nuclei RNA seq on similar tissue were localized in situ with the use of Spatial Transcriptomics.
Project description:Single-cell RNAseq (scRNAseq) and paired VDJ analysis and spatial transcriptomics, we create the first comprehensive cell atlas of the healthy developing, paediatric and adult human gut, including 347,980 cells from up to 10 distinct anatomical sites. We use this data to trace the cellular composition of the gut throughout life, define novel cell markers and cell-cell interactions. We find four neuronal cell populations in the developing enteric nervous system, with expression patterns indicative of irritable bowel syndrome and Hirschsprung’s disease, and identify key cell players and communication networks initiating lymphoid structure formation in early human development.