Project description:Control of oxidative stress in the bone marrow (BM) is key for maintaining the balance between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an oxidative stress marker in BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox.
Project description:The progressive mechanism of myelodysplastic syndrome (MDS) remains unknown. We report that ROBO1 and ROBO2 are identified as novel progression-related somatic mutations using whole-exome and targeted sequencing in six of 16 (37.5%) paired MDS patients undergoing disease progression. To investigated the effect of ROBO1 or ROBO2 on ROBO1/2 CN number and LOH, we employed a Cytosan 750K chip to analyze the copy-number variations (CNVs) and loss of heterogeneity (LOH) in MDS patients with ROBO1&2 mutations. Copy number and LOH analysis of Affymetrix CytoScan 750K array was performed for 14 MDS patients with ROBO1 or ROBO2 mutations
Project description:Myelodysplastic syndromes (MDS) are a heterogenous group of hematopoietic stem cell disorders characterized by dysplastic blood cell formation and peripheral blood cytopenias. Up to 30% of patients with MDS will progress to a highly chemotherapy-resistant secondary acute myeloid leukemia (sAML). We identified mutations in U2AF1 in MDS patients and patients with U2AF1 mutations are at an increased risk of developing sAML.
Project description:Myelodysplastic syndromes (MDS) are a heterogenous group of hematopoietic stem cell disorders characterized by dysplastic blood cell formation and peripheral blood cytopenias. Up to 30% of patients with MDS will progress to a highly chemotherapy-resistant secondary acute myeloid leukemia (sAML). We identified mutations in U2AF1 in MDS patients and patients with U2AF1 mutations are at an increased risk of developing sAML. We identified mutations in U2AF1 in patients with MDS and hypothesized that U2AF1 mutations may represent a novel mechanism that could alter gene expression in MDS. To elucidate gene expression changes associated with U2AF1 mutations, we analyzed the global mRNA expression profile obtained from bone marrow CD34+ cells purified from 5 MDS patients with a U2AF1 mutation, 10 MDS patients without a mutation, and 4 normal donors.
Project description:The progressive mechanism of myelodysplastic syndrome (MDS) remains unknown. We report that ROBO1 and ROBO2 are identified as novel progression-related somatic mutations using whole-exome and targeted sequencing in six of 16 (37.5%) paired MDS patients undergoing disease progression. To investigated the effect of ROBO1 or ROBO2 on ROBO1/2 CN number and LOH, we employed a Cytosan 750K chip to analyze the copy-number variations (CNVs) and loss of heterogeneity (LOH) in MDS patients with ROBO1&2 mutations.
Project description:Myelodysplastic syndromes (MDS) are uncommon entities, heterogeneous clinically and cytogenetically. Recently, a new drug, Lenalidomide, has demonstrated to be very effective in patients with MDS and 5q- reaching 70% of hematological responses whereas patients with MDS without 5q- has only 20-30% of hematological responses. The aim of the present study is to determine genetic alteration in this subset of patients, and describe candidate genes related with response or resistance to Lenalidomide.
Project description:Myelodysplastic syndromes (MDS) are uncommon entities, heterogeneous clinically and cytogenetically. Recently, a new drug, Lenalidomide, has demonstrated to be very effective in patients with MDS and 5q- reaching 70% of hematological responses whereas patients with MDS without 5q- has only 20-30% of hematological responses. The aim of the present study is to determine genetic alteration in this subset of patients, and describe candidate genes related with response or resistance to Lenalidomide. The aim of the present study is to determine genetic alteration in this subset of patients, and describe candidate genes related with response or resistance to Lenalidomide. Copy number analysis of Affymetrix GenomeWide SNP 6.0 arrays was performed for 2 patients with MDS an isolated 5q- by conventional cytogenetics. There are also 2 samples from separated CD3+ lymphocytes, which were used as references for copy number and LOH inference.