Project description:Authorization of the Matrix-M-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization (WHO) for malaria prevention in children is a milestone in the fight against malaria. Yet, to meet the unprecedented demand for malarial vaccines, there is a pressing need for additional adjuvants that induce robust and durable vaccine-induced immunity. Here, we performed a comparative assessment of three clinically relevant adjuvants (an alum formulation of the TLR7/8 agonist 3M-052 (3M-052+Alum), the TLR4 agonist GLA-LSQ (GLA in liposome QS-21 formulation), and Matrix-M, the currently approved adjuvant for R21) for their capacity to induce durable immune responses to the R21 malaria vaccine in non-human primates. Immunization of macaques with R21 adjuvanted with 3M-052+Alum on a 0, 8, and 24-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/Matrix-M vaccine and persisted up to 72 weeks with a half-life of 337 (264 – 459) days. A booster dose at 72 weeks induced an antigen-specific recall response, similar to the R21/Matrix-M vaccination. In contrast, R21/GLA-LSQ immunization induced a considerably lower and short-lived response. Consistent with the durability of serum antibody responses, Matrix-M and 3M-052+Alum induced long-lived plasma cells in the bone marrow and other tissues, including the spleen, but GLA-LSQ stimulated only short-lived plasmablasts. Finally, we show distinct innate immune signatures early after vaccination with these adjuvants. While 3M-052+Alum stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, Matrix-M induced an enhanced expression of interferon- and Th2-related signatures more highly after the booster vaccination. Collectively, these findings provide a comparative database on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M-052+Alum as an additional adjuvant for the R21 malaria vaccine.
Project description:Transcriptome of A. nidulans R21 and ?gprH strains when grown on MM+1% glucose for 24 hours and transferred to MM with no carbon for 4 and 8 hours Three conditions: MM with glucose for 24 hours and MM without glucose for 4 and 8 hours. Two strains R21 and ?gprH. Three biological repetitions of each point.