Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. To better understand the transcriptome of Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, we have conducted an RNA-Seq experiment on WT samples.
Project description:Methicillin-resistant Staphylococcus aureus is one of the major causative agents associated to infections with a high morbidity and mortality in hospitals worldwide. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin isolated and characterized from Larrea tridentata showed the best activity towards methicillin-resistant S. aureus. Understanding of mechanism of action of drugs allows design drugs in a better way. Therefore, we employed microarray to obtain gene expression profile of methicillin-resistant S. aureus after exposure to 3'-demethoxy-6-O-demethylisoguaiacin. The results showed that lignan had an effect on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. A key factor of S. aureus pathogenesis is the production of virulence proteins that are secreted into the extracellular matrix damaging host tissues and forming abscesses that may serve as replicative niches for the bacteria. We recently discovered that host-derived cis-unsaturated fatty acids activate the transcription and translation of EsxA, a protein that plays a central role in abscess formation in clinically relevant MRSA strains. Additionally, we discovered that fatty acid stimulation of EsxA is dependent on fakA, a gene that encodes a protein responsible for the incorporation of exogenous fatty acids into the S. aureus phospholipid membrane. In order to gain a comprehensive understanding of host-fatty-acid-sensing in S. aureus, we performed RNA-Seq analysis on WT Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, in the presence and absence of 10μM linoleic acid.
Project description:This project is intended to study the metabolic adaptation of Methicillin-Resistant Staphylococcus aureus (MRSA) to host immunity. Because of the nature of the samples RTI RCMRC worked with Dr. Anthony R. Richardson so that the samples would be extracted at the University of North Carolina at Chapel Hill under the condition that were optimized by RTI RCMRC for broad spectrum metabolomics analysis.
Project description:Staphylococcus aureus is a Gram-positive human pathogen causing a variety of human diseases in both hospital and community settings. This bacterium is so closely associated with prophages that it is rare to find S. aureus isolates without prophages. Two phages are known to be important for staphylococcal virulence: the beta-hemolysin (hlb) converting phage and the Panton-Valentine Leukocidin (PVL) converting phage. The hlb-converting phage is found in more than 90% of clinical isolates of S. aureus. This phage produces exotoxins and immune modulatory molecules, which inhibit human innate immune responses. The PVL-converting phage produces the two-component exotoxin PVL, which can kill human leucocytes. This phage is wide-spread among community-associated methicillin resistant S. aureus (CA-MRSA). It also shows strong association with soft tissue infections and necrotizing pneumonia. Several lines of evidence suggest that staphylococcal prophages increase bacterial virulence not only by providing virulence factors but also by altering bacterial gene expression: 1) Transposon insertion into prophage regulatory genes, but not into the genes of virulence factors, reduced S. aureus killing of Caenorhabditis elegans.; 2) Although the toxins and immune modulatory molecules encoded by the hlb- converting phages do not function in the murine system, deletion of ϕNM3, the hlb-converting phage in S. aureus Newman, reduced staphylococcal virulence in the murine abscess formation model. 3) In a preliminary microarray experiment, prophages in S. aureus Newman altered the expression of more than 300 genes. In this research proposal, using microarray and high-throughput quantitative RT-PCR (qRT-PCR) technologies, we will identify the effects of the two important staphylococcal phages on the gene expression of S. aureus in both in vitro and in vivo conditions. This project is intended to be completed within one year. All the data – microarray, qRT-PCR and all the primer sequences- will be made available to public 6 month after completion. Data from this project will help us to understand the role of prophages in the S. aureus pathogenesis and can lead to development of a strategy to interfere with the pathogenesis process. Following strains were grown in TSA broth: Staphylococcus aureus USA300 (reference) Staphylococcus aureus USA300 with deletion of ϕSa2usa (Query) Staphylococcus aureus USA300 with deletion of ϕSa3usa (Query) Staphylococcus aureus USA300 Prophage-free mutant (Query) Staphylococcus aureus USA300 Prophage-free mutant lysogenized with ϕSa2mw (Query) Staphylococcus aureus USA300 Prophage-free mutant lysogenized with ϕSa3usa (Query) strain: Staphylococcus aureus USA300 Prophage-free mutant lysogenized with both ϕSa2mw and ϕSa3usa (Query) RNA samples were harvested at early log, midlog and stationary phase.Samples were hybridized on aminosilane coated slides with 70-mer oligos.
Project description:Staphylococcus aureus is one of the most important pathogens in humans and animals, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Rhein, a natural plant product, has potential antimicrobial activity against Staphylococcus aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with rhein. Results provided insight into mechanisms involved in rhein - Staphylococcus aureus interactions. Keywords: rhein response
Project description:Methicillin-resistant Staphylococcus aureus is one of the major causative agents associated to infections with a high morbidity and mortality in hospitals worldwide. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin isolated and characterized from Larrea tridentata showed the best activity towards methicillin-resistant S. aureus. Understanding of mechanism of action of drugs allows design drugs in a better way. Therefore, we employed microarray to obtain gene expression profile of methicillin-resistant S. aureus after exposure to 3'-demethoxy-6-O-demethylisoguaiacin. The results showed that lignan had an effect on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death. This study consisted of comparison of isolated RNA of MRSA not treated and MRSA treated with lignan 3'-demethoxy-6-O-demethylisoguaiacin. Both RNAs samples were differentially dyed with Cy3 and Cy5 during cDNA synthesis and hybridized on DNA chip. Afterwards, the chip was scanned in a GenePix 4000B scanner. The resulting gene expression profile was analyzed in databases for functional annotations to find a potential mechanism of the lignan in MRSA.
Project description:To establish general differences between the protein expression in S. aureus strains, five methicillin sensitive S. aureus (MSSA) strains and five methicillin resistant S. aureus (MRSA) strains were compared both individually and as MSSA and MRSA groups in the absence of antibiotics. Proteins were compared by ultra-performance liquid chromatography-mass spectrometry.