Project description:The genetic and developmental mechanisms that control the decision between scale and feather growth â two profoundly different epidermal appendages, and an important developmental shift in the evolution of birds from their dinosaurian ancestors â remain poorly understood. Domestic pigeons display dramatic variation in foot epidermal appendages within a single species, and classical studies suggest that a small number of genes control much of this variation; thus pigeons provide a tractable model to understand skin appendage specification and variation. Here we show that feathered feet in pigeons are the consequence of a partial transformation of limb-type identity mediated by cis-regulatory changes in the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also demonstrate that ectopic hindlimb expression of Tbx5 is associated with the development of foot feathers in domestic chickens, suggesting that similar developmental mechanisms underlie phenotypic convergence in avian lineages that diverged over 100 MYA. These results show how qualitative and quantitative changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide a viable molecular mechanism for the evolution of hindlimb scale and feather distribution in dromaeosaurs. Examination of H3K27ac status in embryonic limb buds from two domestic pigeon breeds, racing homer and Indian fantail
Project description:To evaluate the lncRNAs and mRNAs in ovaries associated with egg production performance in domestic pigeons, high-throughput RNA sequencing of ovaries between high and low egg production performance groups were performed and analyzed in this study.
Project description:The genetic and developmental mechanisms that control the decision between scale and feather growth – two profoundly different epidermal appendages, and an important developmental shift in the evolution of birds from their dinosaurian ancestors – remain poorly understood. Domestic pigeons display dramatic variation in foot epidermal appendages within a single species, and classical studies suggest that a small number of genes control much of this variation; thus pigeons provide a tractable model to understand skin appendage specification and variation. Here we show that feathered feet in pigeons are the consequence of a partial transformation of limb-type identity mediated by cis-regulatory changes in the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also demonstrate that ectopic hindlimb expression of Tbx5 is associated with the development of foot feathers in domestic chickens, suggesting that similar developmental mechanisms underlie phenotypic convergence in avian lineages that diverged over 100 MYA. These results show how qualitative and quantitative changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide a viable molecular mechanism for the evolution of hindlimb scale and feather distribution in dromaeosaurs.
Project description:Domestic rock pigeons (Columba livia) homozygous for either of two “recessive red” mutations, which are partially-overlapping deletions causing downregulation of Sox10, display brilliant red colors instead of blue/black feathers. Sox10 encodes a transcription factor important for melanocyte differentiation and function, but the precise role that it plays in promoting eumelanin over pheomelanin pigment production in pigeons are unknown. In this study, we perform ChIPseq for SOX10, H3K27ac, and H3K27me3 to better understand the genome occupancy of SOX10 in avian melanocytes.
Project description:The immune response associated with mastitis caused by Mycoplasma bovis is a very complicated biological process in several type of cells, including immune cells, mammary epithelial cells and, endothelial cells. Thus, revealing of the microRNAs in the Mycoplasma bovis infected mammary gland tissues is particularly important for the immune response mechanism to Mycoplasma bovis. Firstly, mammary gland tissue samples were collected from Holstein cows and screened for Mycoplasma bovis. Then, total RNA was isolated from mycoplasma bovis infected tissues and RNA sequencing was performed. After bioinformatics analysis, GO and KEGG analysis of target genes of identified microRNAs were conducted. Our results revaled that 24 of the known microRNAs were expressed differently and 13 of the novel microRNAs were expressed differently in Mycoplasma bovis positive tissues. The target genes of these microRNAs were found to be associated with especially inflammation pathways. In conclusion, this study demonstrated that identified miRNAs may be involved in the signaling pathways during mastitis case caused by Mycoplasma bovis.
Project description:To unravel distinct pattern of metagenomic surveillance and respiratory microbiota between Mycoplasma pneumoniae (M. pneumoniae) P1-1 and P1-2 and explore the impact of COVID-19 pandemic on epidemiological features
2024-08-07 | GSE274269 | GEO
Project description:Microbiome of domestic pigeons in Seoul, Korea
| PRJNA871020 | ENA
Project description:Genetics of piebald patterning in domestic pigeons
Project description:Mutations in the gene encoding surfactant protein C (SFTPC) have been linked to interstitial lung disease in children and adults. Expression of the index mutation, SP-Cdeltaexon4, in transiently transfected cells and type II cells of transgenic mice resulted in misfolding of the proprotein, activation of ER stress pathways and cytotoxicity. In the current study we show that stably transfected cells adapted to chronic ER stress imposed by constitutive expression of SP-Cdeltaexon4 via an NF-kB-dependent pathway. However, infection of cells expressing SP-Cdeltaexon4 with respiratory syncytial virus resulted in significantly enhanced cytotoxicity associated with accumulation of the mutant proprotein, pronounced activation of the unfolded protein response and cell death. Adaptation to chronic ER stress imposed by misfolded SP-C was associated with increased susceptibility to viral-induced cell death. The wide variability in the age of onset of ILD in patients with SFTPC mutations may be related to exposure to an environmental insult that ultimately overwhelms the homeostatic, cytoprotective response.