Project description:Klebsiella variicola F2R9 was isolated from banana root, and its sequence has been deposited as ATCC BAA-830. It corresponds to sequence type 11 (ST11) and KL16 and contains no identifiable plasmids. The genome showed few antimicrobial resistance and virulence genes and several plant association genes. The strain showed susceptibility to most antimicrobials and avirulent behavior.
Project description:Klebsiella variicola strain DX120E (=CGMCC 1.14935) is an endophytic nitrogen-fixing bacterium isolated from sugarcane crops grown in Guangxi, China and promotes sugarcane growth. Here we summarize the features of the strain DX120E and describe its complete genome sequence. The genome contains one circular chromosome and two plasmids, and contains 5,718,434 nucleotides with 57.1% GC content, 5,172 protein-coding genes, 25 rRNA genes, 87 tRNA genes, 7 ncRNA genes, 25 pseudo genes, and 2 CRISPR repeats.
Project description:Bacterial strain FH-1 with high efficiency of degrading Atrazine is separated by means of enrichment culture from the soil applied with Atrazine for many years. FH-1, recognized as Klebsiella variicola based on phylogenetic analysis of 16S rDNA sequences, can grow with Atrazine which is the sole nitrogen source. In fluid inorganic salt medium, the optimal degradation temperature, pH value, and initial concentration of Atrazine are 25°C, 9.0, and 50 mg L-1, respectively, and the degradation rate of Atrazine by strain FH-1 reached 81.5% in 11 d of culture. The degrading process conforms to the kinetics equation of pesticide degradation. Among the metal ions tested, Zn2+ (0.2 mM) has the most significant effect of facilitation on the degradation of Atrazine. In the fluid medium with Zn2+, the degradation rate of Atrazine is increased to 72.5%, while the Cu2+ (0.2 mM) inhibits the degradation of Atrazine. The degradation products of Atrazine by strain FH-1 were identified as HEIT (2-hydroxyl-4-ethylamino-6-isopropylamino-1,3,5-triazine), MEET (2-hydroxyl-4,6-bis(ethylamino)-1,3,5-triazine), and AEEO (4,6-bis(ethylamino)-1,3,5-triazin-2(1H)-one) by HPLC-MS/MS. Three genes (atzC, trzN, and trzD) encoding for Atrazine degrading enzymes were identified by PCR and sequencing in strain FH-1. This study provides additional theoretical support for the application of strain FH-1 in bioremediation of fields polluted by Atrazine.
Project description:We report here the complete genome sequence of Klebsiella variicola strain HKUOPLA, isolated from a giant panda feces sample collected from Ocean Park, Hong Kong. The complete genome of this bacterium may contribute toward the discovery of efficient cellulose-degrading pathways.
Project description:Outbreaks of bacterial diseases occur in farmed Chinese longsnout catfish (Leiocassis longirostris). Due to limited information on aquatic Klebsiella variicola-infected animals, this study aimed to identify strain LL2208 isolated from diseased L. longirostris, determine its biological features, and evaluate its risk to public health. Strain LL2208 was tested for molecular identification, challenge, string, biofilm formation, and antimicrobial susceptibility. Furthermore, the whole genome of the strain was sequenced and analyzed. Based on molecular identification, strain LL2208 was identified as K. variicola. Artificial infection showed that this strain was moderately virulent to L. longirostris with an LD50 = 7.92 × 107 CFU/mL. Antibiotic sensitivity tests showed that this strain was resistant to penicillins, macrolides, aminoglycosides, amphenicols, glycopeptides, and lincosamide, indicating multidrug resistance. Strain LL2208 has a genome size of 5,557,050 bp, with a GC content of 57.38%, harboring 30 antimicrobial resistance genes and numerous virulence-related genes. Its molecular type was ST595-KL16-O5. Collinearity analysis showed that strain LL2208 was highly similar to the human-derived K. variicola strain. In conclusion, the multidrug-resistant and virulent K. variicola strain LL2208 was isolated from fish and may have originated from humans. These results provide a foundation for further studies on the transmission of K. variicola between humans and aquatic animals.