Project description:This SuperSeries is composed of the following subset Series: GSE36461: MiRNA profiling during infection with H1N1 influenza A virus (A/Mexico/InDRE4487/H1N1/2009) GSE36462: MiRNA profiling during infection with H7N7 influenza A virus (A/Ck/Germany/R28/H7N7/2003) GSE36553: mRNA profiling during infection with H1N1 influenza A virus (A/Mexico/InDRE4487/H1N1/2009) Refer to individual Series
Project description:To further understand the molecular pathogenesis of the 2009 pandemic H1N1 influenza virus infection, we profiled cellular miRNAs of lung tissue from BALB/c mice infected with influenza virus BJ501 and a mouse-adapted influenza virus A/Puerto Rico/8/34 (H1N1)(PR8) as a comparison.
Project description:Differential expression was determined in Calu-3 cells between mock infected and infected with H1N1 influenza virus A/Netherlands/602/2009 at nine time points post-infection. As a comparison, cells were also infected with A/CA/04/2009 H1N1 influenza virus at 4 time points post-infection.
Project description:The influenza A(H1N1)pdm09 virus caused a global flu pandemic in 2009 and contributes to seasonal epidemics. Different treatment and prevention options for influenza have been developed and applied with limited success. Here we report that an Akt inhibitor MK2206 possesses potent antiviral activity against influenza A(H1N1)pdm09 virus in vitro. We showed that MK2206 blocks the entry of different A(H1N1)pdm09 strains into cells. Moreover, MK2206 prevented A(H1N1)pdm09-mediated activation of cellular signaling pathways and the development of cellular immune responses. Importantly, A(H1N1)pdm09 virus was unable to develop resistance to MK2206. Thus, MK2206 is a potent anti-influenza A(H1N1)pdm09 agent.
Project description:To further understand the roles of miRNA during influenza A virus infection, we performed miRNA profiling in human alveolar adenocarcinoma cell lines, A549 cells, infected with influenza A virus A/Beijing/501/2009(H1N1) and A/goose/Jilin/hb/2003(H5N1).
Project description:The influenza A(H1N1)pdm09 virus caused a global flu pandemic in 2009 and contributes to seasonal epidemics. Different treatment and prevention options for influenza have been developed and applied with limited success. Here we report that an Akt inhibitor MK2206 possesses potent antiviral activity against influenza A(H1N1)pdm09 virus in vitro. We showed that MK2206 blocks the entry of different A(H1N1)pdm09 strains into cells. Moreover, MK2206 prevented A(H1N1)pdm09-mediated activation of cellular signaling pathways and the development of cellular immune responses. Importantly, A(H1N1)pdm09 virus was unable to develop resistance to MK2206. Thus, MK2206 is a potent anti-influenza A(H1N1)pdm09 agent. Total RNA obtained from NCI-H1666 cells, which are non-small cell lung cancer cell line. NCI-H1666 cells were non- or MK2206-treated (10 μM) and mock- or virus-infected (A/Helsinki/p14/2009) at moi of 3.
Project description:This study used virological, histological, immunological and global gene expression to compare the virlence of two newly emerged 2009 H1N1 isolates (A/Mexico/InDRE4487/2009 and A/Mexico/4108/2009) and current seasonal H1N1 influenza strain (A/Kawasaki/UTK-4/2009) in experimentally infected cynomolgus macaques. We showed that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia. Disease associated with these SOIV isolates was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain.
Project description:In order to identify the swine genes which play roles in the regulation of swine influenza A virus replication, the gene microarray was performed to explore the systematical host response to the swine H1N1/2009 influenza A virus infection in porcine cells.
Project description:In recent years, the roles of microRNAs playing in the regulation of influenza viruses replication caused researchers' much attenion. However, much work focused on the interactions between human, mice or chicken microRNAs with human or avian influenza viruses rather than the interactions of swine microRNAs and swine influenza viruses. To investigate the roles of swine microRNAs playing in the regulation of swine influenza A virus replication, the microRNA microarray was performed to identify which swine microRNAs were involved in swine H1N1/2009 influenza A virus infection.