Project description:Global gene expression analysis was performed comparing human skeletal muscle samples from patients with various forms of muscular dystrophy and mitochondrial myopathies in order to identify specific gene expression changes associated with collagen VI deficiency (leading to UllrichM-BM-4s Congenital Muscular Dystrophy) and depletion of mitochondrial DNA relative to other mitochondrial myopathies We analysed the gene expression profile of skeletal muscle from children suffering from mitochondrial myopathies and various forms of muscular dystrophy relative to skeletal muscle from healthy children using commercially available arrays that represents the complete human genome (Agilent Human SurePrintGE, 8x60K )
Project description:Allele frequency analysis reveals that the breed is enhanced for genes controlling traits associated with the poodle-type coat, which are perceived to have an association with hypoallergenicity, with no strong signatures of selection for Labrador retriever (LAB) traits. This study provides a blueprint for understanding how dog breeds are formed, highlighting the limited scope of trait selection in defining seemingly new breeds.
Project description:Global gene expression analysis was performed comparing human skeletal muscle samples from patients with various forms of muscular dystrophy and mitochondrial myopathies in order to identify specific gene expression changes associated with collagen VI deficiency (leading to Ullrich´s Congenital Muscular Dystrophy) and depletion of mitochondrial DNA relative to other mitochondrial myopathies
Project description:<p>The samples are drawn from a collection of patients with a heterogeneous set of neuromuscular disorders, including congenital muscular dystrophy, congenital myopathy, limb-girdle muscular dystrophy, Emery-Dreifuss muscular dystrophy, and arthrogryposis, along with unaffected parents and siblings in some cases. The samples were collected by the following clinicians affiliated with the associated institutes: <ol> <li>Kathryn North and Nigel Clarke (Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Australia)</li> <li>Hanns Lochmuller and Kate Bushby (The Newcastle Muscle Centre, Newcastle University, UK)</li> <li>Peter Kang (Boston Children's Hospital)</li> <li>Carsten Bonnemann (National Institutes of Health, Bethesda, MD, USA)</li> <li>Nigel Laing (University of Western Australia)</li> </ol> </p> <p> All exome sequencing was performed at the Broad Institute of Harvard and MIT; samples sequence capture was performed using Agilent SureSelect Human All Exon Kit v2 or Illumina's Rapid Capture Exome enrichment kit and sequencing was performed on an Illumina HiSeq 2000. In addition some samples were whole genome sequenced on Illumina HiSeq X Ten.</p>
Project description:The intent of the experiment was to identify genes that were differentially expressed between dogs affected with anterior cruciate ligament (ACL) rupture and breed-matched controls. Anterior cruciate ligament and knee synovial tissue biopsies were collected from 4 ACL rupture affected cases and 4 unaffected control dogs. Cases and controls were matched as closely as possible based on breed, sex, neutered status, age, and weight. Medications that the dogs were taking at the time of sample collection were also considered. We prioritized sample size and quality above all other variables, therefore, two matched pairs of Golden Retrievers were chosen with two matched pairs of Labrador Retrievers for this analysis. Tissues from cases were collected during knee stabilization surgery. Tissues from unaffected control dogs were collected from dogs undergoing pelvic limb amputation or euthanasia for reasons unrelated to this study. Illumina TruSeq RNA libraries were constructed and 150bp paired-end sequencing was performed using the Illumina Hi-Seq 2500 platform. Table 1. Breed, sex, age, and weight of matched case and control pairs chosen for RNA sequencing analysis Cases Matched Controls Breed Sex Age (yr) Weight (kg) Breed Sex Age (yr) Weight (kg) GR1 CM 8.8 30.5 GR2 CM 14.9 N/A GR3 CM 5.6 44.0 GR4 CM 3.9 34.0 LR1 CM 9.7 36.0 LR2 CM 12.7 28.5 LR3 CM 13.3 36.0 LR4 CM 13.5 35.0 GR = Golden Retriever. LR = Labrador Retriever. CM= castrated male. Weight at the time of death was not available for one dog.