Project description:This paper presents an updated checklist of the butterflies of Europe, together with their original name combinations, and their occurrence status in each European country. According to this checklist, 496 species of the superfamily Papilionoidea occur in Europe. Changes in comparison with the last version (2.6.2) of Fauna Europaea are discussed. Compared to that version, 16 species are new additions, either due to cryptic species most of which have been discovered by molecular methods (13 cases) or due to discoveries of Asian species on the eastern border of the European territory in the Ural mountains (three cases). On the other hand, nine species had to be removed from the list, because they either do not occur in Europe or lost their species status due to new evidence. In addition, three species names had to be changed and 30 species changed their combination due to new evidence on phylogenetic relationships. Furthermore, minor corrections were applied to some authors' names and years of publication. Finally, the name Polyommatusottomanus Lefèbvre, 1831, which is threatened by its senior synonym Lycaenalegeri Freyer, 1830, is declared a nomen protectum, thereby conserving its name in the current combination Lycaenaottomana.
Project description:The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
Project description:Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage.
Project description:Butterflies and moths are found in all terrestrial environments and require efforts for a better understanding of its mega-diversity. These taxa have been the subject of several studies involving phylogeny, ecology and environmental impacts. Nevertheless, several areas in the tropics remain unexplored, resulting in gaps in the taxonomic composition and distribution of butterflies in endemic environments. Therefore, a survey of the butterfly fauna of the Bodoquena Plateau in Brazil was conducted. This area consists of tropical Atlantic Forests, with marginal influences of Savannah, Chaco and Pantanal. Sampling was carried out in 20 locations using Van Someren Rydon traps and insect nets between November 2009 and April 2015. Active collection of individuals was conducted from 9:00 to 17:00h, totaling 240 hours of sampling effort. In total, we registered 768 individuals belonging to 146 species of 98 genera, six families and 18 subfamilies. Nymphalidae was the richest family (84 species), followed by Hesperiidae (22 species), Riodinidae (14 species), Pieridae (12) Papilionidae (11 species) and Lycaenidae (five species). We sampled 239 nymphalids in traps, with 48 species, 30 genera, 15 tribes and five subfamilies. The most common species were Eunica macris (Godart, 1824), Dynamine artemisia (Fabricius, 1793) and Memphis moruus (Fabricius, 1775). Therefore, this study contributes to the knowledge of the Neotropical butterfly diversity and distribution, providing 37 new records and supporting the use of wildlife inventories as important tools for the knowledge of tropical forests biodiversity and conservation.
Project description:Males of many butterfly species secrete long-lasting mating plugs to prevent their mates from copulating with other males, thus ensuring their sperm will fertilize all future eggs laid. Certain species have further developed a greatly enlarged, often spectacular, externalized plug, termed a sphragis. This distinctive structure results from complex adaptations in both male and female genitalia and is qualitatively distinct from the amorphous, internal mating plugs of other species. Intermediate conditions between internal plug and external sphragis are rare. The term sphragis has often been misunderstood in recent years, hence we provide a formal definition based on accepted usage throughout most of the last century. Despite it being a highly apparent trait, neither the incidence nor diversity of the sphragis has been systematically documented. We record a sphragis or related structure in 273 butterfly species, representing 72 species of Papilionidae in 13 genera, and 201 species of Nymphalidae in 9 genera. These figures represent respectively, 13% of Papilionidae, 3% of Nymphalidae, and 1% of known butterfly species. A well-formed sphragis evolved independently in at least five butterfly subfamilies, with a rudimentary structure also occurring in an additional subfamily. The sphragis is probably the plesiomorphic condition in groups such as Parnassius (Papilionidae: Parnassiinae) and many Acraeini (Nymphalidae: Heliconiinae). Some butterflies, such as those belonging to the Parnassius simo group, have apparently lost the structure secondarily. The material cost of producing the sphragis is considerable. It is typically offset by production of a smaller spermatophore, thus reducing the amount of male-derived nutrients donated to the female during mating for use in oogenesis and/or somatic maintenance. The sphragis potentially represents one of the clearest examples of mate conflict known. Investigating its biology should yield testable hypotheses to further our understanding of the selective processes at play in an 'arms race' between the sexes. This paper provides an overview, which will inform future study.
Project description:Pieridae is one of the largest and almost cosmopolitan groups of butterflies, which plays an important role in natural ecosystems; however, to date, its phylogeny and evolutionary history have not been fully resolved. In this study, we obtained the complete or nearly complete mitochondrial genomes of 100 pierid taxa (six newly sequenced, sixty extracted from the whole-genome data, and thirty-four directly available from GenBank). At the same time, for the first time, we conducted comparative mitogenomic and phylogenetic analyses based on these mitogenomic data, to further clarify their spatio-temporal evolutionary patterns. Comparative mitogenomic analysis showed that, except for cox2, the GC content of each of the 13 protein-coding genes (PCGs) in the rapidly diverging subfamily Pierinae was higher than in its sister group Coliadinae. Moreover, the dN/dS values of nine genes (atp6, atp8, cox1, cox3, cob, nad1, nad3, nad5, and nad6) in Pierinae were also relatively higher than those in its sister group, Coliadinae. Phylogenetic analysis showed that all the resultant phylogenetic trees were generally in agreement with those of previous studies. The Pierinae family contained six clades in total with the relationship of (Leptosiaini + (((Nepheroniini + Arthocharidini) + Teracolini) + (Pierini + Elodini))). The Pieridae originated in the Palearctic region approximately 72.3 million years ago in the late Cretaceous, and the subfamily Pierinae diverged from this family around 57.9 million years ago in the Oriental region, shortly after the K-Pg mass extinction event; in addition, the spatio-temporal evolutionary patterns of Pierinae were closely correlated with geological events and environmental changes, as well as the host plant coevolutionary scenario in Earth's history. However, some incongruencies were observed between our results and those of previous studies in terms of shallow phylogenies for a few taxa, and should be further investigated.