Project description:Vibriosis caused by Vibrio vulnificus on eels represents an important threat for this specie under culture conditions. Development of new transcriptomic tools is essential to increase the knowledge of eel biology, that nowadays is scarcer. Therefore, using previous results obtained by 454 sequencing of the eel immune-enriched transcriptome, an eel-specific custom microarray have been designed. Gills transcriptomic pattern were analyzed as a principal portal of entry for pathogens in fish after 1h of bath infection with Vibrio vulnificus to describe gill immune response. Moreover, two different strains were used, vibro vulnificus wild type (R99) and rtx double mutant (CT285), to asses the virulence of these pathogen caused by MARTX.
Project description:Vibriosis caused by Vibrio vulnificus on eels represents an important threat for this specie under culture conditions. Development of new transcriptomic tools is essential to increase the knowledge of eel biology, that nowadays is scarcer. Therefore, using previous results obtained by 454 sequencing of the eel immune-enriched transcriptome, an eel-specific custom microarray have been designed. Gills transcriptomic pattern were analyzed as a principal portal of entry for pathogens in fish after 1h of bath infection with Vibrio vulnificus to describe gill immune response. Moreover, two different strains were used, vibro vulnificus wild type (R99) and rtx double mutant (CT285), to asses the virulence of these pathogen caused by MARTX. Adult european eels were bath infected with two Vibrio vulnificus strains, the wild type and double Rtx mutant (CT285). After 0, 3, 12h post-infection eel gills were sampled. Three individuals per experimental point were sampled, including a Control group and a Handling control group. Obtaining a total of 24 samples. The transcriptomic profile was described for each individual sample.
Project description:Vibrio vulnificus multiply rapidly in host tissues under iron overloaded conditions. To understand the effects of iron in the physiology of this pathogen we performed a genome-wide transcriptional analysis of this bacterium growing under three different iron concentrations. V.vulnificus CMCP6 cells were grown under three different iron concentrations (TSBS + EDDA 50uM, TSBS and TSBS + FAC 250 ug/ml) and samples taken at log phase. Keywords: Response to the iron concentration of the media