Project description:With these experiments we investigate the impact of the deletion of the ydcH gene on the transcriptomes of Bacillus subtilis strains ABS2005.
Project description:Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes. Furthermore, all models were quality-controlled using Mᴇᴍᴏᴛᴇ, an open-source application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.
Project description:Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes.Furthermore, all models were quality-controlled using Mᴇᴍᴏᴛᴇ, an open-source application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.
Project description:Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes.Furthermore, all models were quality-controlled using Mᴇᴍᴏᴛᴇ, an open-source application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.
2022-02-16 | MODEL2007110001 | BioModels
Project description:Sequencing of Bacillus strains
Project description:The aim of the study was to carry out a CGH study utilizing a set of 39 diverse Bacillus isolates. Thirty four B. cereus and five B. anthracis strains and isolates were chosen so as to represent different lineages based on previous characterizations, including MLEE and MLST (Helgason, Okstad et al. 2000; Helgason, Tourasse et al. 2004). They represent the spectrum of B. cereus phenotypic diversity by including soil, dairy and periodontal isolates in addition to virulent B. anthracis strains.
Project description:Comparing the transcriptional responses of Bacillus subtilis strains WN624 and WN1106 at 5 kPa and 101 kPa. WN1106 is a 5 kPa-evolved strain with increased fitness compared to ancestor-WN624 strain at 5 kPa. This experiment probed the difference in response when the strains are grown at 5 kPa.
Project description:AtxA, the master virulence regulator of Bacillus anthracis, regulates the expression of three toxins that are required for the pathogenicity of Bacillus anthracis. Recent transcriptome analyses also showed that AtxA affects a large number of genes on both chromosome and plasmid, suggesting its role as a global regulator. Its mechanism of gene regulation nor binding target in vivo was, however, not well understood. In this work, we conducted ChIP-seq for cataloging binding sites of AtxA in vivo and Cappable-seq for catalogging the transcription start sites on the B. anthracis genome. For detected regulons, single knockout strains were constructed and RNA-seq was conducted for each strain.
Project description:<p>Gut microbiota modulation by a probiotic is a novel therapy for hypercholesterolemia mitigation. This study initially investigated the potential hypocholesterolemic effect of Bacillus sp. DU-106 in hypercholesterolemic rats and explored its potential relation with gut microbiota. Sprague-Dawley rats received a high-fat diet, or a high-fat diet supplemented with 7.5 × 10<sup>9</sup> and 1.5 × 10<sup>10</sup> CFU/kg bw/day Bacillus sp. DU-106 (low-dose and high-dose groups). At the end of 9 weeks, Bacillus sp. DU-106 treatment significantly decreased the body weight, liver index, and total cholesterol. 16S rRNA sequencing showed that Bacillus sp. DU-106 intervention significantly increased bacterial richness and particularly increased the genus abundance of Turicibacter, Acinetobacter, Brevundimonas, and Bacillus and significantly decreased the abundance of Ralstonia. Metabolomic data further indicated that the supplementation of Bacillus sp. DU-106 remarkably changed the gut metabolic profiles of hypercholesterolemic rats and, in particular, elevated the metabolites of indole-3-acetate, methylsuccinic acid, creatine, glutamic acid, threonine, lysine, ascorbic acid, and pyridoxamine. Spearman's correlation analysis showed the close relation between the different genera and metabolites. In conclusion, Bacillus sp. DU-106 supplement ameliorated high-fat diet-induced hypercholesterolemia and showed potential probiotic benefits for the intestine.</p><p><strong>KEY POINTS:</strong> • A novel potential probiotic Bacillus sp. DU-106 ameliorated hypercholesterolemia in rats. • Bacillus sp. DU-106 supplement regulated gut microbiome structure and richness. • Bacillus sp. DU-106 supplement changed metabolic profiles in high-fat diet rats. • Significant correlations were observed between differential genera and metabolites.</p>