Project description:Biomanufacturing remains financially uncompetitive with the lower cost but higher carbon emitting hydrocarbon based chemical industry. Novel chassis organisms may enable cost reductions with respect to traditional chassis such as E. coli and so open an economic rout to low emission biomanufacturing. Extremophile bacteria exemplify that potential. Salt tolerant halomonas species thrive in conditions inimical to other organisms. Their adoption would eliminate the cost of sterilising equipment. Novel chassis are inevitably poorly understood in comparison to established organisms. Rapid characterisation and community data sharing will facilitate organisms’ adoption for biomanufacturing. This paper describes baseline proteomics data set for Halomonas bluephagenesis TD01 under active development for biomanufactoring. The data record comprises a newly sequenced genome for the organism; evidence for expression of 1150 proteins (30% of the proteome) including baseline quantification of 1050 proteins (27% of the proteome) and a spectral library enabling re-use for targeted proteomics assays. Protein data is annotated with KEGG Orthology enabling rapid matching of quantitative data to pathways of interest to biomanufacturing.
Project description:Global gene expression profiles of V. parahaemolyticus grown under 2% and 0.66% NaCl were compared to define the minimum low-salt stimulon. The ectABC-lysC operon for synthesis of the compatible solute ectoine, as well as three compatible-solute transport systems, namely ProU (glycine betaine), OpuD1 (glycine betaine) and Pot2 (spermidine), was up-regulated under 2% NaCl in relative to 0.66% NaCl. The 2% NaCl condition favored the inducible expression of OmpW, OmpN and OmpA2, while repressed the expression of OmpA1, OmpU and VP1008. These results indicated that, to master the hyperosmotic stress of saline environments, V. parahaemolyticus might not only accumulate osmoprotectants through uptake or endogenous synthesis of compatible solutes, but also remodel its profiles of outer membrane protein to restore its cell membrane. The above differentially regulated genes will provide novel candidates for the further investigation of the molecular mechanisms of osmoadaptation in V. parahaemolyticus.
Project description:Halomonas species are renowned for their production of organic compatible solutes, particularly ectoine. However, the identification of key regulatory genes governing ectoine production in Halomonas remains limited. In this study, we conducted a combined transcriptome-proteome analysis to unveil additional regulatory genes influencing ectoine biosynthesis, particularly under ultraviolet (UV) and salt conditions. NaCl induction resulted in a 20-fold increase, while UV treatment led to at least 2.5-fold increases in ectoine production. The number of overlapping genes between transcriptomic and proteomic analyses for three comparisons, i.e., non-UV with NaCl (UV0-NaCl) vs. non-UV without NaCl (UV0), UV strain 1 (UV1-NaCl) vs. UV0-NaCl, and UV strain 2 (UV2-NaCl) vs. UV0-NaCl were 137, 19, and 21, respectively. The overlapped Gene Ontology (GO) enrichments between transcriptomic and proteomic analyses include ATPase-coupled organic phosphonate, phosphonate transmembrane transporter activity, and ATP-binding casse
Project description:In order to explore the effect of introducing the ectoine synthesis module in Synechococcus elongatus PCC 7942 on the global regulation of the strain under high-salt environment. The ectoine synthesis module was introduced at the Synpcc7942_0808 locus to obtain the Syn7942/Δsps-ect strain that lacked sucrose synthesis and could synthesize ectoine. Comparative transcriptomic analysis was performed on WT and Syn7942/Δsps-ect under 0 mM and 300 mM NaCl conditions.
Project description:The mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains, although some exceptions in basidiomycete fungi can be found. These studies have been conducted in settings where cells are subjected to stress, either hypo or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. Here, we have studied transcriptomic changes in Aspergillus sydowii, a halophilic species, when growing in three different salinity conditions (No salt, 0.5M and 2.0M NaCl). In this fungus salinity related responses occur under high salinity (2.0M NaCl) and not when cultured under optimal conditions (0.5M NaCl), suggesting that in this species, most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions.
Project description:Quantitative RNA sequencing (RNA-seq) and the complementary phenotypic assays were implemented to investigate the transcriptional responses of Chromohalobacter salexigens to osmotic and heat stress. These conditions trigger the synthesis of ectoine and hydroxyectoine, two compatible solutes of biotechnological interest. Our findings revealed that both stresses make a significant impact on C. salexigens global physiology. Apart from compatible solute metabolism, the most relevant adaptation mechanisms were related to “oxidative- and protein-folding- stress responses”, “modulation of respiratory chain and related components”, and “ion homeostasis”. A general salt-dependent induction of genes related to the metabolism of ectoines, as well as repression of ectoine degradation genes by temperature, was observed. Different oxidative stress response mechanisms, secondary or primary, were induced at low and high salinity respectively, and repressed by temperature. A higher sensitivity to H2O2 was observed at high salinity, regardless of temperature. Low salinity induced genes involved in “protein-folding-stress response”, suggesting disturbance of protein homeostasis. Transcriptional shift of genes encoding three types of respiratory NADH dehydrogenases, ATP synthase, quinone pool, Na+/H+ antiporters, and sodium-solute symporters, was observed depending on salinity and temperature, suggesting modulation of the components of the respiratory chain and additional systems involved in the generation of H+ and/or Na+ gradients. Remarkably, the Na+ intracellular content remained constant regardless of salinity and temperature. Disturbance of Na+- and H+-gradients with specific ionophores suggested that both gradients influence ectoine production, but with differences depending on the solute, salinity, and temperature conditions. Flagellum genes were strongly induced by salinity, and further induced by temperature. However, salt-induced cell motility was reduced at high temperature, possibly caused by an alteration of Na+ permeability by temperature, as dependence of motility on Na+-gradient was observed. The transcriptional induction of genes related to the synthesis and transport of siderophores correlated with a higher siderophore production and intracellular iron content only at low salinity. In addition, compared to low salinity external iron increased hydroxyectoine accumulation by 20% at high salinity, but reduced the intracellular content of ectoines by 50% at high salinity plus high temperature. These findings support the relevance of iron homeostasis for osmoadaptation, thermoadaptation and accumulation of ectoines, in C. salexigens
Project description:This study aimed to investigate the survival of an environmental isolate under salt stress and to identify the various genes involved in stress protection following RNA sequencing analysis. The obtained results provide new targets that will allow understanding the in-depth mechanisms involved in the adaptation of bacteria to salt stress.
Project description:This study aimed to investigate the survival of an environmental isolate under salt stress and to identify the various genes involved in stress protection following RNA sequencing analysis. The obtained results provide new targets that will allow understanding the in-depth mechanisms involved in the adaptation of bacteria to salt stress.