Project description:Our aims in this study were: 1) to identify the miRNAs of the bumble bees Bombus terrestris and B. impatiens; 2) to compare the total numbers of miRNAs between both bumble bee species and between them and the honey bee, Apis mellifera; and 3) to test whether the sequences and expression patterns of miRNAs were conserved between species. To investigate each of these aims we used miRNA-seq (deep sequencing of miRNA-enriched libraries) in B. terrestris, and bioinformatics prediction programs to identify miRNAs in both Bombus species. We identified 131 miRNAs in B. terrestris, and 114 in B. impatiens; of these, 17 were new miRNAs that had not previously been sequenced in any species. We found a striking level of difference in the miRNAs present between Bombus and A. mellifera, with 103 miRNAs in A. mellifera not being present in the genomes of the two bumble bees. miRNA profiles of Bombus terrestris at two developmental stages in larvae. This submission represents 'Bombus terrestris' component of study.
Project description:We use high-thoughput RNA sequencing to investigate the stressors experienced by the vulnerable Bombus terricola near agricultural areas.
Project description:Our aims in this study were: 1) to identify the miRNAs of the bumble bees Bombus terrestris and B. impatiens; 2) to compare the total numbers of miRNAs between both bumble bee species and between them and the honey bee, Apis mellifera; and 3) to test whether the sequences and expression patterns of miRNAs were conserved between species. To investigate each of these aims we used miRNA-seq (deep sequencing of miRNA-enriched libraries) in B. terrestris, and bioinformatics prediction programs to identify miRNAs in both Bombus species. We identified 131 miRNAs in B. terrestris, and 114 in B. impatiens; of these, 17 were new miRNAs that had not previously been sequenced in any species. We found a striking level of difference in the miRNAs present between Bombus and A. mellifera, with 103 miRNAs in A. mellifera not being present in the genomes of the two bumble bees.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. To achieve a comprehensive profile of accessible chromatin regions and provide clues for all possible regulatory elements in the bumblebee genome, we did ATAC-seq for Bombus terrestris samples derived from its four developmental stages: egg, larva, pupa, and adult, respectively. The sequencing reads of ATAC-seq were mapped to B. terrestris reference genome, and its accessible chromatin regions were identified and characterized using bioinformatic methods. Our study will provide important resources not only for uncovering regulatory elements in the bumblebee genome, but also for expanding our understanding of bumblebee biology.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).