Project description:The goal of this project was to screen soil samples for bacteria that may harbor B. anthracis virulence-associated genes (VAGs). There is currently no information about the prevalence of these types of organisms in the environment. Due to increased environmental monitoring of select agents by programs such as BioWatch and biodetection systems in place at the United States Post Offices and Department of State locations, it has become critical that we not only better understand the natural range of B. anthracis but also how widespread B. anthracis virulence genes are in environmental communities. Naturally occurring isolates containing the B. anthracis virulence genes could generate false-positive results in tests that detect the anthrax toxins, capsule or their associated genes. Understanding the true diversity and pathogenic potential of Bacillus spp. and particularly the B. cereus group is crucial not only in terms of understanding data from environmental monitoring but also diagnosing patients with clinical presentations similar to anthrax in the future. Severe and fatal disease caused by strains similar to B. anthracis could unnecessarily initiate emergency responses if anthrax was incorrectly suspected. Conversely, these strains may be used as bioterror agents requiring science-based responses; presently our limited understanding of these organisms does not permit data-driven decision making. We have investigated 700 aerobic sporoform soil isolates obtained from two areas in the Southwest of the US. Soil samples from the first site had been taken from public access land approximately 50 meters across from the work site of a fatal pneumonia case in a welding factory. This took place in year 2003 when B. cereus was isolated from a metal worker. The second site was targeted because of a recent case involving a deceased mule suspected to have died of a B. anthracis infection. Soil samples were initially analyzed at the CDC. Isolates were obtained by heating the soil at 65 degrees Celcius for 30 minutes followed by plating on agar media. All isolates were screened by PCR for the presence of B. anthracis genomic traits such as toxin genes (cya, lef and pag) as well as chromosomal markers. All isolates were also tested for their hemolytic activity as well as phage sensitivity.
Project description:The goal of this project was to screen soil samples for bacteria that may harbor B. anthracis virulence-associated genes (VAGs). There is currently no information about the prevalence of these types of organisms in the environment. Due to increased environmental monitoring of select agents by programs such as BioWatch and biodetection systems in place at the United States Post Offices and Department of State locations, it has become critical that we not only better understand the natural range of B. anthracis but also how widespread B. anthracis virulence genes are in environmental communities. Naturally occurring isolates containing the B. anthracis virulence genes could generate false-positive results in tests that detect the anthrax toxins, capsule or their associated genes. Understanding the true diversity and pathogenic potential of Bacillus spp. and particularly the B. cereus group is crucial not only in terms of understanding data from environmental monitoring but also diagnosing patients with clinical presentations similar to anthrax in the future. Severe and fatal disease caused by strains similar to B. anthracis could unnecessarily initiate emergency responses if anthrax was incorrectly suspected. Conversely, these strains may be used as bioterror agents requiring science-based responses; presently our limited understanding of these organisms does not permit data-driven decision making. We have investigated 700 aerobic sporoform soil isolates obtained from two areas in the Southwest of the US. Soil samples from the first site had been taken from public access land approximately 50 meters across from the work site of a fatal pneumonia case in a welding factory. This took place in year 2003 when B. cereus was isolated from a metal worker. The second site was targeted because of a recent case involving a deceased mule suspected to have died of a B. anthracis infection. Soil samples were initially analyzed at the CDC. Isolates were obtained by heating the soil at 65 degrees Celcius for 30 minutes followed by plating on agar media. All isolates were screened by PCR for the presence of B. anthracis genomic traits such as toxin genes (cya, lef and pag) as well as chromosomal markers. All isolates were also tested for their hemolytic activity as well as phage sensitivity. Eighty-four query strains were investigated in this study, with each query strain hybridized against the reference strain, Sterne. Two dye-swap experiments were performed with seventeen strains, for a total of four hybridizations per query strain. The other strains have a single dye experiment, for a total of two hybridizations per query strain. Each 70mer oligo spotted on the B. cereus species microarray is spotted once. Positive controls on the array consist of oligos designed from the sequenced reference genome, Sterne, and negative controls on the array consist of oligos designed from the thale cress plant, Arabidopsis thaliana.
Project description:Genomic variation is an inherent phenomena observed among members of same species belonging to different geographical locations. In case of P. falciparum, an apicomplexan protozoan parasite, its 22.8 MB nuclear genome is known to display vast genetic diversity in the subtelomeric compartments having but not exclusively variant gene families like var, rifins and stevors and examples in other elements of the genome have recently been documented. Microarrays, relies solely on the genomic sequence information to capture the relevant transcript abundance and needs to consider these variations into account for revealing true transcriptional variation.Here, we describe the designing strategy of a custom P. falciparum 15K array using Agilent platform to study the transcriptome of Indian field isolates for which genome sequence information is limited. Array contains probes representing genome sequence of two distinct geographical isolates (i.e 3D7 and HB3) and subtelomeric var gene sequence of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts by performing a 244K array experiment representing multiple probes per gene/transcript. Array performance was evaluated and validated using RNA materials from P. falciparum clinical isolates obtained directly from patients with differing clinical conditions due to malaria infection.Due to pre probe screening large percentage (91 %) of the represented transcripts could be detected from Indian P. falciparum isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains.
Project description:A comparative genomic approach was used to identify large sequence polymorphisms among Mycobacterium avium isolates obtained from a variety of host species. DNA microarrays were used as a platform for comparing mycobacteria field isolates with the sequenced bovine isolate Mycobacterium avium subsp. paratuberculosis (Map) K10. ORFs were classified as present or divergent based on the relative fluorescent intensities of the experimental samples compared to Map K10 DNA. Map isolates cultured from cattle, bison, sheep, goat, avian, and human sources were hybridized to the Map microarray. Three large deletions were observed in the genomes of four Map isolates obtained from sheep and four clusters of ORFs homologous to sequences in the Mycobacterium avium subsp. avium (Maa) 104 genome were identified as being present in these isolates. One of these clusters encodes glycopeptidolipid biosynthesis enzymes. One of the Map sheep isolates had a genome profile similar to a group of Mycobacterium avium subsp. silvaticum (Mas) isolates which included four independent laboratory stocks of the organism traditionally identified as Maa strain 18. Genome diversity in Map appears to be mostly restricted to large sequence polymorphisms that are often associated with mobile genetic elements. Keywords: Comparative genomic hybridization