Project description:The purpose of this project is to examine the effects of rootstocks on the gene expression patterns in scions of apple trees. Gene expression patterns were examined in the Gala variety grafted onto seven different, commonly used rootstocks. These trees were grown in the greenhouse to limit environmental effects. Also, gene expression profiles were examined in three different varieties (Ambrosia, Melrose,and Gala) grafted onto B.9 rootstocks grown in the field. Keywords: apple, rootstock, graft, scion
Project description:in order to understand the role of phloems of apple dwarfing rootstocks,and investigated the expression differences of dwarfing and vigorous apple stocks in the phloem tissue at active growing stage. The phloem tissue at active growing stage(60 DABB(days after buds break) of three apple dwarfing rootstocks including M9,B9,A1d(a partial GA insensitive mutant of Malus hupensis)and two vigorous apple rootstock PYTC ( WT of Malus hupensis) and M. sylvestris were sampled and underwent RNA-Seq analysis.
Project description:Fire blight (FB) is a bacterial disease affecting plants from Rosaceae family, including apple and pear. FB develops after the infection of Erwinia amylovora, gram-negative enterobacterium, and results in burnt-like damages and wilting, which can affect all organs of the plant. Although the mechanisms underlying disease response in apples are not elucidated yet, it has been well described that FB resistance depends on the rootstock type. The main objective of this work was to identify miRNAs involved in response to bacterial infection in order to better explain apple defense mechanisms against fire blight disease. We performed deep sequencing of eighteen small RNA libraries obtained from inoculated and non-inoculated Gala apple leaves. 233 novel plant mature miRNAs were identified together with their targets and potential role in response to bacterial infection. We identify three apple miRNAs responding to inoculation (mdm-miR168a,b, mdm-miR194C and mdm-miR1392C) as well as miRNAs reacting to bacterial infection in a rootstock-specific manner (miR395 family). Our results provide insights into the mechanisms of fire blight resistance in apple.
Project description:Purpose: The aim of this study was to identify the specific transcriptomic changes in apple root tissue in response to infection by F. Proliferatum.The characterized transcriptome changes during apple root defense responses to F. Proliferatum inoculation should facilitate the identification of the key molecular components, which may differentiate the resistance and susceptibility among apple rootstock germplasm.
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray