Project description:we utilized transcriptome sequencing to identify differentially expressed genes in rice heat-tolerant line and heat-sensitive line under high night temperature stress .
Project description:Rice reproductive development is highly sensitive to high temperature stress. In rice flowering occurs over a period of at least 5 days. Heat stress alters the global gene expression dynamics in panicle especially during pollen development, anthesis and grain filling. Some of the rice genotypes like Nagina 22 show better spikelet fertility and grain filling compared to high yielding and popular rice cultivars like IR 64. We carried out microarray analysis of 8 days heat stressed panicles of Nagina22, heat and drought tolerant aus rice cultivar and IR64, a heat susceptible indica genotype along with unstressed samples of Nagina22 and IR64 so as to understand the transcriptome dynamics in these two genotypes under heat stress and to identify the genes important for governing heat stress tolerance in rice.
Project description:we utilized microRNA sequencing to identify differentially expressed miRNAs in rice heat-tolerant line and heat-sensitive line under high night temperature stress .
Project description:Heat shock factors (Hsfs) are known to regulate heat and drought stress response by controlling the expression of heat shock proteins and oxidative stress responsive genes. Loss-of-function of OsHSFA2e gene resulted in increased sensitivity of rice plants to drought and heat stress. To identify the targets of OsHSFA2e and dissect the stress response pathway regulated by it, we performed transcriptome profiling of Oshsfa2e mutant plants under drought stress as well as well-watered conditions by RNA-sequencing.
Project description:Floral organs are extremely sensitive to stress during anthesis and lead to severe yield loss. Rice anthers and pollinated pistils of two cultivars with contrasting tolerance to heat and drought stress under variable conditions, including control, heat, combined heat and drought stress, were used to explore gene expression pattern in male and female reproductive organs during anthesis under control and stress conditions. More gene regulation was induced by combined drought and heat stress than heat in anthers of both cultivars. N22 showed less regulation under combined stress than Moroberekan. The overlap of regulated genes between two cultivars was rather low, indicated the distinct molecular stress responses. We used whole genome microarrays to explore gene expression pattern and molecular mechanisms in male and female reproductive organs during anthesis under control and stress conditions in two rice cultivars, sought to identify the key transcripts that play roles in inducing heat and drought tolerance during reproduction in rice.
Project description:Global warming has great impacts on plant growth and development. Heat shock transcription factors are the master regulators of heat stress response to alleviate protein misfolding in the cytosol in plants. However, how plants deal with accumulation of misfolded proteins in the endoplasmic reticulum (ER) under heat stress conditions is less understood, especially in crops such as in rice. Here we report a positive feed-back loop mediated by the membrane-associated transcription factors NTL3 and bZIP74 in heat stress response in rice. In response to heat stress, the ER-membrane-associated bZIP74 is activated and up-regulate the expression of NTL3 in rice; NTL3 encodes an ER-membrane-associated transcription factor that is activated and regulate downstream genes including bZIP74 involved in protein folding and reactive oxygen species scavenging. Loss-of-function mutations of NTL3 are sensitive to heat stress while inducible expression of the processed form of NTL3 increases heat stress tolerance in rice seedlings. Our work reveals the important role of NTL3 in ER stress response for heat stress tolerance in rice.
Project description:we utilized microRNA sequencing to identify differentially expressed miRNAs in rice heat-tolerant line and heat-sensitive line under high night temperature stress .
Project description:To better understand the mechanisms that regulate the heat stress response in rice, we conducted a comparative analysis of transcriptome profile in panicles from two rice lines, heat-tolerant line 252 (HTL252) and heat-susceptible line 082 (HSL082) using rice Affymetrix GeneChip. In HTL252 panicles, 1538 differentially expressed genes (DEGs) genes with at least four-fold expression changes compared with the control under heat treatment were considered heat-responsive (HR). Of these DEGs, 522 genes were up-regulated while 1016 genes were repressed. Among DEGs in HSL082, 496 genes were induced and 1707 genes were repressed. Out of the 370 common DEGs found between HTL252 and HSL082, 129 genes were induced and 241 genes were repressed.