Project description:Rapidly growing antibiotic resistance among gastrointestinal pathogens, and the ability of antibiotics to induce the virulence of these pathogens makes it increasingly difficult to rely on antibiotics to treat gastrointestinal infections. The probiotic E. coli strain Nissle 1917 (EcN) is the active component of the pharmaceutical preparation Mutaflor® and has been successfully used in the treatment of gastrointestinal disorders. Gut bacteriophages are dominant players in maintaining the microbial homeostasis in the gut, however, their interaction with incoming probiotic bacteria remains to be at conception. The presence of bacteriophages in the gut makes it inevitable for any probiotic bacteria to be phage resistant, in order to survive and successfully colonize the gut. This study addresses the phage resistance of EcN, specifically against lytic T4 phage infection. From various experiments we could show that i) EcN is resistant towards T4 phage infection, ii) EcN’s K5 polysaccharide capsule plays a crucial role in T4 phage resistance and iii) EcN’s lipopolysaccharide (LPS) inactivates T4 phages and notably, treatment with the antibiotic polymyxin B which neutralizes the LPS destroyed the phage inactivation ability of isolated LPS from EcN. Our results further indicate that N-acetylglucosamine at the distal end of O6 antigen in EcN’s LPS could be the interacting partner with T4 phages. From our findings, we have reported for the first time, the role of EcN’s K5 capsule and LPS in its defense against T4 phages. In addition, by inactivating the T4 phages, EcN also protects E. coli K-12 strains from phage infection in tri-culture experiments. The combination of the identified properties is not found in other tested commensal E. coli strains. Furthermore, our research highlights phage resistance as an additional safety feature of EcN, a clinically successful probiotic E. coli strain.
Project description:Plant pathogens require lethal virulence factors, susceptible hosts, and optimal environmental conditions for disease establishment. High soil salinity, exacerbated by climate change, significantly impacts agro-biological ecosystems. However, the overall interactions between plant pathogens and salt stress are not fully characterized or understood. This study examines the effects of salt stress on representative plant pathogens: Burkholderia gladioli, Pectobacterium carotovorum subsp. carotovorum, and Ralstonia solanacearum. Using pan-genome-based comparative transcriptomics, we analyzed the comprehensive alterations within the biological systems of plant pathogens when treated with 200 mM NaCl. Our results highlight the differential responses between salt-sensitive and salt-tolerant pathogens to salt stress.
Project description:Phages have emerged as prime suspects in the adaptation of pathogens to new hosts and the emergence of new pathogens or epidemic clones. Here we describe the genomic features of two related prophages (Ab105-1Ø and Ab105-2Ø) present in the ST-2 epidemic clone of Acinetobacter baumannii clinical strain Ab105_GEIH-2010 and not present in genetically related Ab155_GEIH-2000 strain isolated 10 years before. The Quasicore genome of Ab105-1Ø and Ab105-2Ø prophages revealed genes that promote bacterial-host fitness. The results of microarray analysis under stress conditions, SOS response activation revealed 5% and 30% of genes expressed by Ab105-1Ø and Ab105-2Ø prophages (which produce bacterial lysis) in the first case and underexpression of these genes from prophages in the second case. Hence, the QS system plays a major role in the evolution of phages in their natural hosts and environments. Interestingly, in host-virus interactions, RT-PCR showed several mechanisms of overexpression of the SOS response in relation to phage defence mechanisms: i) SAM or AdoMet-MTase (methyltransferases) and MazG protein (pyrophosphohydrolase) associated with phage defence in response to bacterial attack; ii) eukaryotic-like protein kinase (glutamate 5-kinase) associated with prevention of secondary infection by the same or a closely related virus. Overexpression of secretory virulence factors such as oxidoreductase (DsbA-like), anfo-nitrogenase and chromosome segregation proteins were also observed. In conclusion, study of the co-evolution of phages (virus) and bacteria may be essential in the search for means of combatting multi-resistant epidemic clones.
Project description:Retrons are bacterial genetic elements that encode a reverse transcriptase and, in combination with toxic effector proteins, can serve as antiphage defense systems. However, the mechanisms of action of most retron effectors, and how phages evade retrons, are not well understood. Here, we show that some phages can evade retrons and other defense systems by producing specific tRNAs. We find that expression of retron-Eco7 effector proteins (PtuA and PtuB) leads to degradation of tRNA-Tyr and abortive infection. The genomes of T5 phages that evade retron-Eco7 include a tRNA-rich region, including a highly expressed tRNA-Tyr gene, which confers protection against retron-Eco7. Furthermore, we show that other phages (T1, T7) can use a similar strategy, expressing a tRNA-Lys, to counteract a tRNA anticodon defense system (PrrC170).
Project description:Phages have emerged as prime suspects in the adaptation of pathogens to new hosts and the emergence of new pathogens or epidemic clones. Here we describe the genomic features of “swarms” of three related prophages (Ab105-1ϕ, Ab105-2ϕ and Ab105-3ϕ) present in the ST-2 epidemic clone of Acinetobacter baumannii clinical strain Ab105 GEIH-2010 and not present in genetically related Ab155 GEIH-2000 strain isolated 10 years before. The “Quasicore genome” of Ab105-1ϕ, Ab105-2ϕ and Ab105-3ϕ prophages revealed genes that promote bacterial-host fitness. The results of microarray analysis under stress conditions, SOS response and Quorum Sensing (QS) activation revealed 42% and 21% of genes expressed by Ab105-2ϕ and Ab105-3ϕ prophages (which produce bacterial lysis) in the first case and underexpression of these genes from prophages in the second case. Hence, the QS system plays a major role in the evolution of phages in their natural hosts and environments. Interestingly, in host-virus interactions, RT-PCR showed several mechanisms of overexpression of the SOS response in relation to phage defence mechanisms: i) SAM or AdoMet-MTase (methyltransferases) and MazG protein (pyrophosphohydrolase) associated with phage defence in response to bacterial attack; ii) eukaryotic-like protein kinase (glutamate 5-kinase) associated with prevention of secondary infection by the same or a closely related virus. Overexpression of secretory virulence factors such as oxidoreductase (DsbA-like), anfo-nitrogenase and chromosome segregation proteins were also observed. Moreover, under iron-deficient growth, there was an overexpression by RT-PCR of the a new interesting cluster of genes located following a “Moron” organization in the Ab105-3ϕ prophage being associated with iron uptake systems (Xanthine dehydrogenase gene cluster, Anthranilate operon, ABC transporter and TonB dependent receptor). In conclusion, study of the co-evolution of phages (virus) and bacteria may be essential in the search for means of combatting multi-resistant epidemic clones. Two parental clinical strains of A. baumannii (90% identity, indicated by PFGE, and ST2, indicated by Multilocus Sequence Typing, MLST) isolated in the same Intensive Care Unit (ICU) of a Spanish hospital, in 2000 and 2010, during the “I Multicenter Study GEIH-REIPI-Ab-2000” (Ab155 GEIH-2000) and “II Multicenter Study GEIH-REIPI-Ab-2010” (Ab105 GEIH-2010), respectively. Three replicates from RNA of the AB105 GEIH-2010 strain x 2 conditions (SOS response by Mitomycin C) and (Quorum Sensing activation by AHLs mixture).
Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Project description:One fascinating aspect of plant pathogen co-evolution is that pathogens use effectors to alter a broad range of host responses. RNA splicing functions in many physiological processes including plant immunity. However, how plant pathogens manipulate host RNA splicing process remains unknown. Here we demonstrate that PsAvr3c, an avirulence effector from oomycete pathogen Phytophthora sojae, physically binds to and stabilizes soybean (Glycine max) serine/arginine/lysine rich proteins GmSRKPs in vivo. SRKP, novel proteins associating with spliceosome components, are plant susceptibility factors against Phytophthora. Furthermore, RNA-seq data uncovers that differential splicing over one thousand soybean mRNA transcripts, including defense related genes, are significantly changed in GmSRKP1 over-expressing lines. Representative splicing events are verified in either infection assay or soybean transient expression assay. Our results demonstrate that plant pathogen utilize effector to reprogram host RNA splicing, uncovering a new strategy evolved by pathogens to defeat host immune system