Project description:Background: The food-borne pathogen Campylobacter is one of the most important zoonotic pathogens. Compared to other zoonotic bacteria, Campylobacter species are quite susceptible to environmental or technological stressors. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter (C.) jejuni are already known, information about the heat stress response in the related species C. coli and C. lari are still unknown. Results: The stress response to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analyses for the strain C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100. While C. jejuni showed highest thermotolerance followed by C. lari and C. coli, none of the strains survived at this temperature for more than 24 hours. Transcriptomic analyses revealed that only 3 % of the genes in C. jejuni and approx. 20 % of the genes of C. coli and C. lari were differentially expressed after heat stress, respectively. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL and clpB in all strains, but differences in the gene expression of transcriptional regulators like hspR, perR as well as for genes involved in metabolic pathways, translation processes and membrane components. However, the function of many of the differentially expressed gene is unknown so far. Conclusion: We could demonstrate differences in the ability to survive at elevated temperatures for C. jejuni, C. coli and C. lari and showed for the first time transcriptomic analyses of the heat stress response of C. coli and C. lari. Our data suggest that the heat stress response of C. coli and C. lari are more similar to each other compared to C. jejuni, even though on genetic level a higher homology exists between C. jejuni and C. coli. This indicates that stress response mechanisms described for C. jejuni might be unique for this species and not necessarily transferable to other Campylobacter species.
Project description:Background: The food-borne pathogen Campylobacter is one of the most important zoonotic pathogens. Compared to other zoonotic bacteria, Campylobacter species are quite susceptible to environmental or technological stressors. This might be due to the lack of many stress response mechanisms described in other bacteria. Nevertheless, Campylobacter is able to survive in the environment and food products. Although some aspects of the heat stress response in Campylobacter (C.) jejuni are already known, information about the heat stress response in the related species C. coli and C. lari are still unknown. Results: The stress response to elevated temperatures (46°C) was investigated by survival assays and whole transcriptome analyses for the strain C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100. While C. jejuni showed highest thermotolerance followed by C. lari and C. coli, none of the strains survived at this temperature for more than 24 hours. Transcriptomic analyses revealed that only 3 % of the genes in C. jejuni and approx. 20 % of the genes of C. coli and C. lari were differentially expressed after heat stress, respectively. The transcriptomic profiles showed enhanced gene expression of several chaperones like dnaK, groES, groEL and clpB in all strains, but differences in the gene expression of transcriptional regulators like hspR, perR as well as for genes involved in metabolic pathways, translation processes and membrane components. However, the function of many of the differentially expressed gene is unknown so far. Conclusion: We could demonstrate differences in the ability to survive at elevated temperatures for C. jejuni, C. coli and C. lari and showed for the first time transcriptomic analyses of the heat stress response of C. coli and C. lari. Our data suggest that the heat stress response of C. coli and C. lari are more similar to each other compared to C. jejuni, even though on genetic level a higher homology exists between C. jejuni and C. coli. This indicates that stress response mechanisms described for C. jejuni might be unique for this species and not necessarily transferable to other Campylobacter species.
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep aborion isolates of C. jejuni was investigated by Array-based CGH
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep abortion isolates of C. jejuni was investigated by Array-based CGH
Project description:Campylobacter, a major foodborne pathogen, is increasingly resistant to macrolide antibibotics. Previous findings suggested that development of macrolide resistance in Campylobacter requires a multi-step process, but the molecular mechanisms involved in the process are not known. In our study, erythromycin-resistant C. jejuni mutant (R) was selected in vitro by stepwise exposure of C. jejuni NCTC11168(S) to increasing concentrations of erythromycin.The resistant were subjected to microarray and the the global transcriptional profile was analyzed. In this series, DNA microarray was used to compare the gene expression profiles of the macrolide-resistant strain with its parent wild-type strain NCTC11168. A large number of gene showed significant changes in R. The up-regulated genes in the resistant strains are involved in miscellaneous periplasmic proteins, efflux protein and putative aminotransferase, while the majority of the down-regulated genes are involved in electron transport, lipoprotein, heat shock protein and unknown function proteins. The over-expression of efflux pump and periplasmic protein was involved in the development of resistance to macrolide in C. jejuni. An eight chip study using total RNA recovered from four separate resistant-type cultures of Erythrocin-resistant Campylobacter jejuni NCTC111168 (R) and four separate cultures of Campylobacter jejuni NCTC111168 (S). Each chip measures the expression level of 1634 genes from Campylobacter jejuni NCTC11168.
Project description:Although the majority of previous work on campylobacteriosis has centered on the species Campylobacter jejuni, Campylobacter coli, the sister group to C. jejuni, is also a significant problem, but remains a much less studied organism. The purpose of this study was to develop and apply an expanded 16 locus MLST genotyping scheme to a large collection of C. coli isolates sampled from a wide range of host species, and to complete microarray comparative genomic hybridizations for these same strains, in order to: (1) determine whether host specific clones, genotypes, or clonal complexes are evident and (2) evaluate whether there are particular genes comprising the dispensable portion of the C. coli genome that are more commonly associated with certain host species. Genotyping and ClonalFrame analyses of the expanded MLST data suggest that (1) host preferred groups have tended to evolve in the diversification of C. coli, (2) this has happened repeatedly, at different times, throughout the evolutionary history of the species, and (3) recombination has played varying roles in the diversification of the different groups. Concomitant with the information on evolutionary history derived from the MLST data, the microarray data suggests that a combination of common ancestry in some cases and lateral gene transfer in others are behind a tendency for sets of genes to be common to isolates derived from particular hosts. Keywords: comparative genomic hybridization
Project description:Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduces the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals were still colonized (non-responders). To understand the underlying mechanism, we conducted 3 larger scale vaccination and challenge studies using 135 broiler birds and found a similar responder/non responder effect. The submitted data were used for a genome-wide association study of the chicken responses to glycoconjugate vaccination against Campylobacter jejuni.
Project description:Campylobacter, a major foodborne pathogen, is increasingly resistant to macrolide antibibotics. Previous findings suggested that development of macrolide resistance in Campylobacter requires a multi-step process, but the molecular mechanisms involved in the process are not known. In our study, erythromycin-resistant C. jejuni mutant (R) was selected in vitro by stepwise exposure of C. jejuni NCTC11168(S) to increasing concentrations of erythromycin.The resistant were subjected to microarray and the the global transcriptional profile was analyzed. In this series, DNA microarray was used to compare the gene expression profiles of the macrolide-resistant strain with its parent wild-type strain NCTC11168. A large number of gene showed significant changes in R. The up-regulated genes in the resistant strains are involved in miscellaneous periplasmic proteins, efflux protein and putative aminotransferase, while the majority of the down-regulated genes are involved in electron transport, lipoprotein, heat shock protein and unknown function proteins. The over-expression of efflux pump and periplasmic protein was involved in the development of resistance to macrolide in C. jejuni.
Project description:The experiment aimed to find how Campylobacter responds to oxidative stress using hydrogen peroxide. This was done by using previously made TraDIS libraries (https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-023-02835-8) and putting them under oxidative stress. The strains used were C. jejuni 11168, C. coli 15-537360 and C. coli CCN182.
Project description:Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) and C. coli are responsible for approximately 98% of the cases. The ceca of commercial turkeys are the main anatomical site where Campylobacter asymptomatically colonizes. We have previously colonized the ceca of commercial turkey poults with C. jejuni, and demonstrated acute changes in cytokine gene expression in cecal tissue and histologically scored intestinal lesions at 2 days post-inoculation (dpi). The host-response of turkeys to C. coli colonization is unknown. Cecal tonsils (CT) are an important part of the gastrointestinal-associated lymphoid tissue that function to sample material passing in and out of the ceca and generating immune responses against intestinal pathogens. The CT immune response towards Campylobacter is unknown. In this study, we generated a C. coli kanamycin-resistant construct (CcK) for enumeration from cecal contents after experimental challenge. In vitro analysis of CcK demonstrated no changes in motility when compared to the parent isolate, but in vitro growth rates were significantly different than the parent strain. Poults were inoculated by oral gavage with CcK (5x10^7 cfu) or sterile-media (mock-colonized), and euthanized at 1 and 3 dpi. At both time points, CcK was recovered from cecal contents, but not from the mock-colonized group. As a marker of acute inflammation, serum alpha-1 acid glycoprotein was significantly elevated at 3 dpi in CcK inoculated poults compared to mock-infected samples. Significant histological lesions were detected in cecal and CT tissues of CcK colonized poults at 1 and 3 dpi, respectively. RNAseq analysis identified 250 differentially expressed genes (DEG) in CT from CcK colonized poults at 3 dpi, of which 194 were upregulated and 56 were downregulated. From the DEG, 9 significantly enriched biological pathways were identified, including platelet aggregation, response to oxidative stress and negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway. These data suggest that C. coli induced an acute inflammatory response in the intestinal tract of poults, and that platelet aggregation and oxidative stress in the CT may affect the turkey’s ability to resist Campylobacter colonization. Results from this study provide insight into host-response of the turkey CT to Campylobacter colonization. These findings will help to develop and test Campylobacter mitigation strategies to promote food safety in commercial turkeys.