Project description:The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In the study, microrarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7d postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across 9 microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded MR/P fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism, and portions of the TCA cycle. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth-deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract. Voided urine from female CBA/J mice infected with Proteus mirabilis was collected and pooled in RNA stabilizing reagent (RNAprotect). Urine was collected at 1, 3, and 7 d postinfection. RNA was isolated from urine and log-phase LB cultures, converted to cDNA, and labeled with CyDye. Three arrays were completed per time point (9 arrays total). Slides were scanned with a ScanArray Express microarray scanner (Perkin Elmer) at 10 μm resolution and quantified using ScanArray Express software. Resulting data were normalized by total intensity and median spot intensities were identified using MIDAS (v. 2.22) software.
Project description:The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In the study, microrarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7d postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across 9 microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded MR/P fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism, and portions of the TCA cycle. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth-deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract.
Project description:RIVUR Trial participants had Agilent 1M probe and or Nimblegen 2.1M probe aCGH performed on genomic DNA. The study was designed to discover DNA copy number variations in genes critical in kidney/urinary tract development and urinary tract infection susceptibility. Reference DNA used is a single male sample
Project description:Purpose: to analyze the mRNA content of highly purified HCN3+ urinary tract pacemaker cells compared to HCN3- neighboring cells Methods: we sorted HCN3+ and HCN3- cells from E18.5 WT embryos and analyzed their content using RNA-seq Results: Identified differentially expressed transcripts in HCN3+ cells compared to HCN3- cells Conclusions: our study presents the first whole transcriptome analysis of HCN3+ urinary tract pacemaker cells that would provide a basis for the charactarization of the development and function of those cells
Project description:Pseudomonas aeruginosa is one of the most frequent pathogen dominant in complicated urinary tract infections (UTI). To unravel the adaptation strategies of P. aeruginosa to the conditions in the urinary tract and to define the underlying regulatory network an artificial growth system mimicking the conditions in the urinary tract was established. Transcriptome analyses were used to investigate the physiological status of P. aeruginosa under this conditions.
Project description:Pseudomonas aeruginosa is one of the most frequent pathogen dominant in complicated urinary tract infections (UTI). To unravel the adaptation strategies of P. aeruginosa to the conditions in the urinary tract and to define the underlying regulatory network an artificial growth system mimicking the conditions in the urinary tract was established. Transcriptome analyses were used to investigate the physiological status of P. aeruginosa under this conditions. We performed comparisons to identify genes induced under artificial urinary tract conditions to unravel the adaptive strategies and the underlying regulatory network used by Pseudomonas aeruginosa during urinary tract infections using Affimetrix GeneChips. Pseudomonas aeruginosa wild type strain PAO1 was grown in an artificial in vitro growth system mimicking the conditions in the urinary tract. Therefore, biofilms were grown on the surface of membrane filters placed on agar plates at 37 °C up to the late logarithmic state under aerobic and anaerobic conditions (incubated in an anaerobic beanch). An artificial urine medium (AUM) simulating the averaged urine of an human adult was used as nutrient souce. 10-fold diluted Luria Bertani (LB)-medium was used as reference medium. For growth under oxygen depletion the media were supplemented with 50 mM KNO3 to sustain anaerobic respiration. The biofilms were harveted at this time points and resuspsended in 0.9% (w/v) NaCl. The OD578 of biofilm suspension was 0.8 for all tested conditions. First comparison: Identification of genes induced or repressed under aerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown aerobically for 18 h to the late logarithmic phase in biofilms on AUM with the transcriptome profile of the PAO1 strain, which was grown aerobically for 18 h to the late logarithmic phase in biofilms on 10-fold diluted LB. Second comparison: Identification of genes induced or repressed under anaerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown anaerobically for 2 days up to the late logarithmic phase in biofilms on AUM supplemented with 50 mM nitrate with the transcriptome profile of the PAO1 strain, which was grown anaerobically for 2 days up to the late logarithmic phase in biofilms on 10-fold diluted LB supplemented with 50 mM nitrate.