Project description:BACKGROUND:Lipids from oleaginous yeasts emerged as a sustainable alternative to vegetable oils and animal fat to produce biodiesel, the biodegradable and environmentally friendly counterpart of petro-diesel fuel. To develop economically viable microbial processes, the use of residual feedstocks as growth and production substrates is required. RESULTS:In this work we investigated sugar beet pulp (SBP) and molasses, the main residues of sugar beet processing, as sustainable substrates for the growth and lipid accumulation by the oleaginous yeast Lipomyces starkeyi. We observed that in hydrolysed SBP the yeast cultures reached a limited biomass, cellular lipid content, lipid production and yield (2.5 g/L, 19.2%, 0.5 g/L and 0.08 g/g, respectively). To increase the initial sugar availability, cells were grown in SBP blended with molasses. Under batch cultivation, the cellular lipid content was more than doubled (47.2%) in the presence of 6% molasses. Under pulsed-feeding cultivation, final biomass, cellular lipid content, lipid production and lipid yield were further improved, reaching respectively 20.5 g/L, 49.2%, 9.7 g/L and 0.178 g/g. Finally, we observed that SBP can be used instead of ammonium sulphate to fulfil yeasts nitrogen requirement in molasses-based media for microbial oil production. CONCLUSIONS:This study demonstrates for the first time that SBP and molasses can be blended to create a feedstock for the sustainable production of lipids by L. starkeyi. The data obtained pave the way to further improve lipid production by designing a fed-batch process in bioreactor.
Project description:The low secretion levels of cellobiohydrolase I (CBHI) in yeasts are one of the key barriers preventing yeast from directly degrading and utilizing lignocellulose. To overcome this obstacle, we have explored the approach of genetically linking an easily secreted protein to CBHI, with CBHI being the last to be folded. The Trichoderma reesei eg2 (TrEGII) gene was selected as the leading gene due to its previously demonstrated outstanding secretion in yeast. To comprehensively characterize the effects of this fusion protein, we tested this hypothesis in three industrially relevant yeasts: Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Our initial assays with the L. starkeyi secretome expressing differing TrEGII domains fused to a chimeric Talaromyces emersonii-T. reesei CBHI (TeTrCBHI) showed that the complete TrEGII enzyme, including the glycoside hydrolase (GH) 5 domain is required for increased expression level of the fusion protein when linked to CBHI. We found that this new construct (TrEGII-TeTrCBHI, Fusion 3) had an increased secretion level of at least threefold in L. starkeyi compared to the expression level of the chimeric TeTrCBHI. However, the same improvements were not observed when Fusion 3 construct was expressed in S. cerevisiae and Y. lipolytica. Digestion of pretreated corn stover with the secretomes of Y. lipolytica and L. starkeyi showed that conversion was much better using Y. lipolytica secretomes (50% versus 29%, respectively). In Y. lipolytica, TeTrCBHI performed better than the fusion construct. Furthermore, S. cerevisiae expression of Fusion 3 construct was poor and only minimal activity was observed when acting on the substrate, pNP-cellobiose. No activity was observed for the pNP-lactose substrate. Clearly, this approach is not universally applicable to all yeasts, but works in specific cases. With purified protein and soluble substrates, the exoglucanase activity of the GH7 domain embedded in the Fusion 3 construct in L. starkeyi was significantly higher than that of the GH7 domain in TeTrCBHI expressed alone. It is probable that a higher fraction of fusion construct CBHI is in an active form in Fusion 3 compared to just TeTrCBHI. We conclude that the strategy of leading TeTrCBHI expression with a linked TrEGII module significantly improved the expression of active CBHI in L. starkeyi.
Project description:BackgroundLipomyces starkeyi has been widely regarded as a promising oleaginous yeast with broad industrial application prospects because of its wide substrate spectrum, good adaption to fermentation inhibitors, excellent fatty acid composition for high-quality biodiesel, and negligible lipid remobilization. However, the currently low experimental lipid yield of L. starkeyi prohibits its commercial success. Metabolic model is extremely valuable to comprehend the complex biochemical processes and provide great guidance for strain modification to facilitate the lipid biosynthesis.ResultsA small-scale metabolic model of L. starkeyi NRRL Y-11557 was constructed based on the genome annotation information. The theoretical lipid yields of glucose, cellobiose, xylose, glycerol, and acetic acid were calculated according to the flux balance analysis (FBA). The optimal flux distribution of the lipid synthesis showed that pentose phosphate pathway (PPP) independently met the necessity of NADPH for lipid synthesis, resulting in the relatively low lipid yields. Several targets (NADP-dependent oxidoreductases) beneficial for oleaginicity of L. starkeyi with significantly higher theoretical lipid yields were compared and elucidated. The combined utilization of acetic acid and other carbon sources and a hypothetical reverse β-oxidation (RBO) pathway showed outstanding potential for improving the theoretical lipid yield.ConclusionsThe lipid biosynthesis potential of L. starkeyi can be significantly improved through appropriate modification of metabolic network, as well as combined utilization of carbon sources according to the metabolic model. The prediction and analysis provide valuable guidance to improve lipid production from various low-cost substrates.
Project description:Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed β-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.
Project description:In this work we performed assays for the genetic improvement of the oleaginous yeast Lipomyces starkeyi DSM 70296 focusing on its utilization for lipid biosynthesis from renewable sources. The genetic optimization was carried out by random mutagenesis by ultraviolet irradiation and mutant selection by cerulenin, a compound displaying inhibitory effects on lipid biosynthesis. Mutants demonstrating normal growth in presence of cerulenin were considered as good candidates for further studies. Using this strategy, we selected 6 mutants for further studies, in which their productivities were evaluated by fermentation in shaken flasks and bioreactor. The evaluation of the fermentative performance of mutants was carried out using xylose as sole carbon source; the fermentation of wild-type strain was used as reference. Using this strategy it was possible to identify one mutant (termed A1) presenting a significant increase in the productivity rates of both biomass and lipid in comparison to wild-type strain. A1 mutant was further studied in bioreactor using the same fermentation parameters optimized for L. starkeyi lipid production from a mixed carbon source (xylose:glucose), as previously determined by other studies in our laboratory. A1 presented a productivity increase of 15.1% in biomass and 30.7% in lipid productivity when compared to the wild-type strain with a similar fatty acid composition, despite a slight increase (approx. 7%) on the unsaturated fraction. Our work demonstrates the feasibility of the random mutagenesis strategy coupled with mutant selection based on cerulenin screening for the genetic improvement of the oleaginous yeast L. starkeyi.
Project description:BackgroundLipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates.ResultsTo evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method.ConclusionsOur results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well.
Project description:A new mycovirus was found in the Fusarium culmorum strain A104-1 originally sampled on wheat in Belgium. This novel virus, for which the name Fusarium culmorum virus 1 (FcV1) is suggested, is phylogenetically related to members of the previously proposed family ''Unirnaviridae''. FcV1 has a monopartite dsRNA genome of 2898 bp that harbors two large non-overlapping ORFs. A typical -1 slippery motif is found at the end of ORF1, advocating that ORF2 is translated by programmed ribosomal frameshifting. While ORF2 exhibits a conserved replicase domain, ORF1 encodes for an undetermined protein. Interestingly, a hypothetically transcribed gene similar to unirnaviruses ORF1 was found in the genome of Lipomyces starkeyi, presumably resulting from a viral endogenization in this yeast. Conidial isolation and chemical treatment were unsuccessful to obtain a virus-free isogenic line of the fungal host, highlighting a high retention rate for FcV1 but hindering its biological characterization. In parallel, attempt to horizontally transfer FcV1 to another strain of F. culmorum by dual culture failed. Eventually, a screening of other strains of the same fungal species suggests the presence of FcV1 in two other strains from Europe.