Project description:Peripheral blood transcriptome is an important intermediate data source for investigation of the mechanism of Salmonella invasion, proliferation, and transmission but its development in pig is quite limited. We challenged four-week-old piglets (Duroc × Landrace × Yorkshire crossbred) with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood miRNA expression profile before treatment (d0) and at 2 days post inoculation (dpi) using deep sequencing technology.
Project description:Peripheral blood transcriptome is an important intermedia data source for investigation of the mechanism of Salmonella invasion, proliferation, and transmission but its development in pig is quite limited. We challenged four weeks old piglets (Duroc × Landrace × Yorkshire crossbred) with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 day post inoculation (dpi) using deep sequencing technology.
Project description:The experiment aimed at studying gene expression differences in longissimus dorsi muscle from pigs from two groups: High versus low intramuscular fat (IMF). The animals were selected from a crossbred population of Landrace x Yorkshire/Landrace x Duroc animals, where we have previously found a highly significant QTL for IMF (Grindflek et al. 2001: "Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross", Mammalian Genome 12(4): 299-304), and by microarray analysis we hoped to identify candidate genes for the QTL and/or pathways that are affected by the genes responsible for the QTL. Keywords: phenotype comparison
2013-01-01 | GSE12927 | GEO
Project description:Hypothalamus transcriptome profile of growing pigs
Project description:The goal was to obtain the differential transcriptome in the deep cones between shallow and deep wounds and between the Yorkshire and Duroc breeds over time. We made shallow and deep wounds on the backs of 3 Yorkshire and 3 Duroc pigs, biopsied the wounds at 1 2 3 12 and 20 weeks, extracted and amplified the RNA from the deep cones, and hybridized the Affymetrix GeneChip®. We compared wound depth by breed over time; the system included 3 factors (depth, breed and time). The system also included repeated measures since the same pigs were used at each time. It also included paired data since the shallow and deep wounds compared were located on the same pig.
Project description:To investigate effects of long-term intake of RPS on gene expression in the colon and liver of pigs,thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified corn starch was replaced with purified RPS during a 100-day trial. Liver transcriptomic results showed that the expression of CD36, CPT1B and ACADM was down-regulated, while AGPAT4, GPAT, FABP1 and FABP3 were up-regulated by the RPS diet, indicating a decrease in fatty acid intake and synthesis, and an increase in fatty acid oxidation and glycerophospholipid synthesis.Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1? gene expression and suppressed genes involved in lysosome. Thirty-six Duroc × Landrace × Large White growing barrows (70 days of age, 23.78 ± 1.87 kg) were randomly allocated to two groups, each group consisting of three pigs per pen, and six replicates. Pigs in the control group were offered a corn/soybean-based diet, while 230 g/kg purified corn starch (CS) was replaced with purified RPS in the RPS diet group. Diets were formulated according to the nutrient requirements of the National Research Council (1998). When animals reached the age of 120 days, diets were adapted to the nutrient requirements of the animals (finishing diet) and the amount of purified starch increased to 280 g of CS or RPS per kilogram of feed. Pigs had unlimited access to feed and water throughout the experimental period, which consisted of two 50-day trials in which the pigs consumed the growing diet (days 0-50) and finishing diet (days 51-100), respectively. On day 100, one pig from each replicate that met the target slaughter weight (105 to 110 kg) was slaughtered. The liver and colonic mucosa tissues were collected and preserved in liquid nitrogen for gene expression analysis.
Project description:The experiment aimed at studying gene expression differences in longissimus dorsi muscle from pigs from two groups: High versus low intramuscular fat (IMF). The animals were selected from a crossbred population of Landrace x Yorkshire/Landrace x Duroc animals, where we have previously found a highly significant QTL for IMF (Grindflek et al. 2001: "Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross", Mammalian Genome 12(4): 299-304), and by microarray analysis we hoped to identify candidate genes for the QTL and/or pathways that are affected by the genes responsible for the QTL. Keywords: phenotype comparison Direct dye-swap design, with 14 animals in each group (high IMF and low IMF) on 14 separate arrays
Project description:Since CNVs play a vital role in genomic studies, it is an imperative need to develop a comprehensive, more accurate and higher resolution porcine CNV map with practical significance in follow-up CNV functional analyses To detect CNV of pigs, we performed high density aCGH data of diverse pig breeds in the framework of the pig draft genome sequence (Sscrofa10.2) 9 Chinese indigenous pig, one Chinese wild boar and 2 commercial pigs were detected using one pig of Duroc as reference. These 12 animals include 1 wild pig, 2 pigs each from Yorkshire and Landrace as the representatives of modern commercial breeds and 9 unrelated individuals selected from 6 Chinese indigenous breeds (2- Tibetan pig, 2- Diannan small-ear pig, 2-Meishan pig, 1- Min pig, 1-Daweizi pig, and 1-Rongchang pig).
Project description:Porcine reproductive and respiratory syndrome caused by porcine reproductive and respiratory syndrome virus (PRRSV) is an infectious disease characterized by severe reproductive deficiency in pregnant sows, respiratory symptoms in piglets, and high mortality. In this study, we employed Affymetrix microarray chip technology to compare the gene expression profiles of lung tissue samples from Dapulian (DPL) pigs (a Chinese indigenous pig breed) and Duroc×Landrace×Yorkshire (DLY) pigs after infection with PRRSV. During infection with PRRSV, the DLY pigs exhibited the range of clinical features that typify the disease, while the DPL pigs exhibited only mild signs of the disease. The percentage of CD8+ T cells in the DPL pigs was significantly higher than that in the DLY pigs at 21 days post-infection (dpi) (p< 0.05). Interleukin (IL) 1 beta (IL-1β) and IL-2 levels showed significant differences between the DPL and DLY pigs at 0 and 7 dpi (p< 0.01). For IL-10, the DLY pigs had significantly higher values than the DPL pigs at 0 and 7 dpi (p< 0.01). Significant differences were apparent between the DPL and DLY pigs in terms of their tumor necrosis factor-alpha (TNF-α) and interferon (IFN)-gamma (IFN-γ) levels at 0 and 7 dpi (p< 0.01). Microarray data revealed 16 differentially expressed genes in the lung tissue samples from the DLY and DPL pigs (q≤5%), of which LOC100516029 and LOC100523005 were up-regulated in the PRRSV-infected DPL pigs, while the other 14 genes were down-regulated in the PRRSV-infected DPL pigs compared with the PRRSV-infected DLY pigs. The expression levels of 10 of the 16 genes, namely CCDC84, C6ORF52, THYMOSIN, PRVE, HSPCB, CYP2J2, AMPD3, TOR1AIP2, PTGES3, and ACOX3, were validated by real-time quantitative RT-PCR. This study provides a platform for further investigation of the molecular mechanisms underlying the differential immune responses to PRRSV infection in different breeds or lines of pig. We investigated the response of lung tissues from Dapulian (DPL) pigs (a Chinese indigenous pig breed) and Duroc×Landrace×Yorkshire (DLY) pigs infected with porcine reproductive and respiratory syndrome virus (strain JXA1) by using the Affymetrix Porcine Genome Array.
Project description:A CNV map in pigs could facilitate the identification of chromosomal regions that segregate for important economic and disease phenotypes. The goal of this study was to identify CNV regions (CNVRs) in pigs based on a custom array comparative genome hybridization (aCGH). We carried out a custom-made array comparative genome hybridization (aCGH) experiment in order to identify copy number variations (CNVs) in the pig genome analysing animals of diverse pig breeds (White Duroc, Yangxin, Erhualian, Tongcheng, Large White, Pietrain, Landrace and Chinese new pig line DIV ) using a tiling oligonucleotide array with ~720,000 probes designed on the pig genome (Sus scrofa genome version 9.0). In this study, a custom-made tiling oligo-nucleotide 720k array was used with a median probe spacing of 2506 bp for screening 12 pigs with a female Duroc as the reference. WD: White Duroc (♀); YX: Yangxin (♂); EH: Erhualian (♀); TC: Tongcheng (♀); LW: Large White (♀); PT: Pietrain (♂); LD1: Landrace × DIV pig 1 (♂); LD2: Landrace × DIV pig 2 (♀); DIV1: Chinese new pig line DIV 1 (♀); DIV2: Chinese new pig line DIV 2 (♀); L1: Landrace 1 (♂); L2: Landrace 2 (♂).