Project description:The meristem-associated endosymbiont M. extorquens DSM13060 significantly increases needle and root growth of Scots pine (Pinus sylvestris L.) seedlings without producing plant hormones, but by aggregating around host nuclei. Here we studied gene expression of the pine host induced by M. extorquens DSM13060 infection. We selected the time point of 90 days post-inoculation for our analysis based, because at this point, Methylorubrum extorquens DSM13060 has systemically colonized the pine seedlings, being found throughout tissues of roots and shoots.
Project description:Microbes living in plant tissues-endophytes-are mainly studied in crop plants where they typically colonize the root apoplast. Trees-a large carbon source with a high capacity for photosynthesis-provide a variety of niches for endophytic colonization. We have earlier identified a new type of plant-endophyte interaction in buds of adult Scots pine, where Methylorubrum species live inside the meristematic cells. The endosymbiont Methylorubrum extorquens DSM13060 significantly increases needle and root growth of pine seedlings without producing plant hormones, but by aggregating around host nuclei. Here, we studied gene expression and metabolites of the pine host induced by M. extorquens DSM13060 infection. Malic acid was produced by pine to potentially boost M. extorquens colonization and interaction. Based on gene expression, the endosymbiont activated the auxin- and ethylene (ET)-associated hormonal pathways through induction of CUL1 and HYL1, and suppressed salicylic and abscisic acid signaling of pine. Infection by the endosymbiont had an effect on pine meristem and leaf development through activation of GLP1-7 and ALE2, and suppressed flowering, root hair and lateral root formation by downregulation of AGL8, plantacyanin, GASA7, COW1 and RALFL34. Despite of systemic infection of pine seedlings by the endosymbiont, the pine genes CUL1, ETR2, ERF3, HYL, GLP1-7 and CYP71 were highly expressed in the shoot apical meristem, rarely in needles and not in stem or root tissues. Low expression of MERI5, CLH2, EULS3 and high quantities of ononitol suggest that endosymbiont promotes viability and protects pine seedlings against abiotic stress. Our results indicate that the endosymbiont positively affects host development and stress tolerance through mechanisms previously unknown for endophytic bacteria, manipulation of plant hormone signaling pathways, downregulation of senescence and cell death-associated genes and induction of ononitol biosynthesis.
Project description:Methylorubrum extorquens AM1 is engineered to produce itaconic acid by heterologous expression of cis-aconitic acid decarboxylase. Mutation was also performed on phaR in Methylorubrum extorquens AM1, which regulate poly-beta-hydroxybutyrate accumulation, in attempt to increase carbon flux toward itaconic acid production. However, in our case, itaconic acid production by phaR mutant strain was not higher than that of the wildtype. Transcriptomic analysis was utilized in order to examine the cause for this phenomenon. RNA-seq analysis revealed that phaR mutation in the itaconic acid-producing strain might result in a complex regulatory rewiring at the gene expression level, which could cause a reduced resource flux toward ITA production. Also, RNA profiling gave a hint at the broad regulatory role of PhaR.
Project description:We report a genetic variant of Methylorubrum extorquens AM1 that hyperaccumulates the heavy lanthanide gadolinium. Using RNA-seq transcriptomics we identified wide-spread metabolic and physiological changes in this strain and experimentally validate several of them, including increased gadolinium transport and storage in an intracellular compartment we name the lanthasome.