Project description:Purpose: The goal of this study to examine mRNA transcriptomic changes in reward-related brain regions of subjects with alcohol use disorder. Methods: Total RNAs were extracted from postmortem amygdala of 12 AUD and 12 control subjects. rRNA depletion RNA sequencing was performed and the sequence reads were processed using the bulk RNA-seq processing pipeline Pipeliner workflow (Federico et al. Front Genet 2019; 10, 614). AUD-associated mRNA transcriptomic changes were analyzed by the Limma-Voom method. Results: Differentially expressed mRNAs (absolute FC>2.0 & P<0.05) were identified in postmortem amygdala of subjects with alcohol use disorder (AUD). Chronic alcohol consumption may alter mRNA transcriptome profiles in reward-related brain regions, resulting in alcohol-induced neuroadaptations.
Project description:Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD have been validated. Here, to gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. We found distinct gene expression patterns and canonical pathways induced by both acute and chronic intake. Surprisingly, both drinking modes triggered similar transcriptional changes, including up-regulation of ribosome-related/translational pathways and myelination pathways, and down-regulation of chromatin binding and histone modification. Notably, multiple genes that were significantly altered with alcohol drinking, including Atp2b1, Hspa4, Slc4a7, Sbno1, Ubxn2b, Nfkb1, Nts, and Hdac2, had previously been associated with human AUD via GWAS or other genomic studies. In addition, subsequent analyses of hub genes and upstream regulatory pathways predicted that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Overall, our results suggest that the expression of oligodendrocyte-related genes in the central and basolateral subnuclei of the amygdala is sensitive to voluntary alcohol drinking. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, particularly in women, due to repeated excessive alcohol consumption
Project description:The objective of this study was to determine changes in gene expression within the extended amygdala following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats. Starting at 28 days of age, P rats were given concurrent access to 15 and 30 % ethanol for 3 one-h sessions for 5 consecutive days each week until they were 49 days old. Rats were killed by decapitation 3 h after the first ethanol access session on the 15th day of drinking. RNA was prepared from micropunch samples of the nucleus accumbens shell (Acb-sh) and central nucleus of the amygdala (CeA). Ethanol intakes were 2.5 to 3.0 g/kg/session. There were 154 and 182 unique named genes that significantly differed (FDR = 0.2) between the water and ethanol group in the Acb-sh and CeA, respectively. Gene Ontology (GO) analyses indicated that adolescent binge drinking produced changes in the in biological processes involved in cell proliferation and regulation of cellular structure in the Acb-sh, and in neuron projection and positive regulation of cellular organization in the CeA. Ingenuity Pathway Analysis indicated that, in the Acb-sh, there were several major intracellular signaling pathways (e.g., cAMP-mediated and protein kinase A signaling pathways) altered by adolescent drinking, with 3-fold more genes up-regulated than down-regulated in the alcohol group. The cAMP-mediated signaling system was also up-regulated in the CeA of the alcohol group. Weighted gene co-expression network analysis (WGCNA) indicated significant G-protein coupled receptor signaling and transmembrane receptor protein kinase signaling categories in the Acb-sh and CeA, respectively. Overall, the results of this study indicated that binge-like alcohol drinking by adolescent P rats is differentially altering the expression of genes in the Acb-sh and CeA, some of which are involved in intracellular signaling pathways and may produce long-term changes in neuronal function. Differences in gene expression in the central nucleus of the amygdala (CeA) were compared in two groups of alcohol-preferring (P) rats, one given water only and the other given access to 15 & 30% ethanol during adolescence.
Project description:The objective of this study was to determine common innate differences in gene expression in the Central Nucleus of the Amygdala (CeA) among the selectively bred (a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats: (b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (both replicates); (c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats; and (d) Sardinian alcohol-preferring (sP) vs. alcohol-nonpreferring (sNP) rats. Comparison of Differences in Gene Expression in the Central Nucleus of the Amygdala (CeA) of 5 Pairs of Rat Lines Selectively Bred for High or Low Alcohol Consumption.