Project description:We identified the differentially expressed miRNAs in Landes goose liver after overfeeding for 21 days using high-throughput sequencing. We obtained 21453493 and 21525819 clean reads in normal liver and fatty liver by high-throughput sequencing, respectively. Of these clean reads, we respectively gained 9244896 and 9847086 miRNAs sequences in two groups by filtering the known non-miRNA reads, such as rRNA, tRNA, snRNA, and snoRNA by screening against ncRNA deposited in the GenBank and Rfam databases. These findings provided insights into the expression profiles of miRNAs in goose liver, and deepened our understanding of miRNAs in hepatic steatosis of geese.
Project description:Goose hemorrhagic polyomavirus (GHPV) is not a naturally occurring infection in geese in China; however, GHPV infection has been identified in Pekin ducks, a domestic duck species. Herein, we investigated the prevalence of GHPV in five domestic duck species (Liancheng white ducks, Putian black ducks, Shan Sheldrake, Shaoxing duck, and Jinyun Sheldrake) in China. We determined that the Jinyun Sheldrake duck species could be infected by GHPV with no clinical signs, whereas no infection was identified in the other four duck species. We sequenced the complete genome of the Jinyun Sheldrake origin GHPV. Genomic data comparison suggested that GHPVs share a conserved genomic structure, regardless of the host (duck or geese) or region (Asia or Europe). Jinyun Sheldrake origin GHPV genomic characterization and epidemiological studies will increase our understanding of potential heterologous reservoirs of GHPV.
Project description:We have identified the etiological agent of hemorrhagic nephritis enteritis of geese (HNEG), a fatal disease of European geese. HNEG has been recognized in almost all goose breeding areas, with an epizootic pattern, and up to now, the infectious agent has remained unknown. In order to identify the causative agent, infected tissues from HNEG-affected geese were inoculated to 1-day-old goslings, which then developed clinical signs typical of HNEG. Tissue homogenates from these birds were subjected to Freon extraction followed by sucrose density gradient ultracentrifugation. The resulting main band was examined by electron microscopy and consisted of spherical, naked, papovavirus-like particles approximately 45 nm in diameter. The virus was isolated and propagated in goose kidney cell primary culture. Tissue- or culture-purified virus allowed the experimental reproduction of the disease in goslings. Random PCR amplification of viral nucleic acid produced a 1,175-bp fragment which was shown to be associated with field samples collected from geese affected by HNEG on commercial farms in France. Sequence analysis of the PCR product revealed a unique open reading frame, showing 63 to 72% amino acid similarity with the major capsid protein (VP1) of several polyomaviruses. Finally, based on phylogenetic analysis, we conclude that the causative agent of HNEG is closely related to but clearly distinct from other polyomaviruses; we thus have named this newly identified virus Goose hemorrhagic polyomavirus.