Project description:A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruit, as well as leaf, were collected from field grown plants during three consecutive years, and hybridized to high-density, photolithography microarrays. Keywords: developmental time course, gene expression
Project description:Here, we used RNA sequencing and tandem mass tag (TMT)–based quantitative proteomics technology to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon. A total of 6,226 proteins were quantified, and the number of quantitative proteins is the largest in fruit proteome to date, comparable to studies in model organisms such as rice and Arabidopsis. Omics analysis showed that smaller changes occurred in protein abundance compared to mRNA abundance. Furthermore, protein and transcript abundance were poorly correlated, and the correlation coefficients decreased during fruit development and ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying complex regulatory networks of fruit ripening in watermelon.
Project description:A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruit, as well as leaf, were collected from field grown plants during three consecutive years, and hybridized to high-density, photolithography microarrays. Keywords: developmental time course, gene expression This experiment contained a single biological replicate, two tissue types (leaf, fruit flesh), and three time points (12 days post-pollination, 24 days post-pollination, and 36 days post-pollination. One hundred and twenty-seven genes were chosen from this experiments and used in conjunction with quantitative-PCR to examine two additional biological replications of the experiment.
Project description:Analysis of gene expression level. The hypothesis tested in the present study that ClSnRK2.3 negatively regulated watermelon fruit development and ripening.
Project description:In this study, Solexa sequencing technology has been used to discover small RNA populations of self-grafted watermelon and grafted watermelon (bottle gourd and squash were used as rootstocks). A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known and 15 novel miRNAs) and 51 (21 known miRNAs and 30 novel miRNAs) miRNAs were expressed significantly different with higher abundance or lower abundance in watermelon grafted on to bottle gourd and squash, respectively. The differentially expressed miRNA target various transcriptional factors and other genes which involved in a wide range of biological processes. This study was firstly conducted to identify and compare miRNAs on genome-wide scale in watermelon grafting system. The miRNAs expressed differentially when watermelon was grafted onto different rootstocks suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expression to regulate plant growth and response to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular basis of miRNA regulation of genes expressed in self-grafted and grafted watermelon.
Project description:Male sterility is important mechanism in watermelon for production of hybrid seed. While some fruit development related studies were widely performed in watermelon, there are no reports of profiling gene expression in floral organs of watermelon. RNA-seq analysis was performed in order to identify male sterility related genes from two different groups of watermelon (genetic male-sterile (GMS) DAH3615-MS line and male-fertile DAH3615 line, respectively) to identify the differentially expressed genes (DEGs).
Project description:In this study, Solexa sequencing technology has been used to discover small RNA populations of self-grafted watermelon and grafted watermelon (bottle gourd and squash were used as rootstocks). A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known and 15 novel miRNAs) and 51 (21 known miRNAs and 30 novel miRNAs) miRNAs were expressed significantly different with higher abundance or lower abundance in watermelon grafted on to bottle gourd and squash, respectively. The differentially expressed miRNA target various transcriptional factors and other genes which involved in a wide range of biological processes. This study was firstly conducted to identify and compare miRNAs on genome-wide scale in watermelon grafting system. The miRNAs expressed differentially when watermelon was grafted onto different rootstocks suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expression to regulate plant growth and response to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular basis of miRNA regulation of genes expressed in self-grafted and grafted watermelon. Examination of 3 different small RNA expression profilings in self-grafted and grafted watermelon