Project description:To identify the therapeutic targets in a treatment-refractroy cancer patient, we performed single-cell RNA sequencing for 3,115 cells from primary bladder cancer (BC159-T#3) and patient-derived xenografts (BC159-T#3-PDX-vehicle and BC159-T#3-PDX-tipifarnib). Matched time-series bulk tumor tissues were also sequenced using whole exome target probe (WES) and whole transcriptome target probe (WTS).
Project description:To identify the therapeutic targets in a treatment-refractory cancer patient, we performed single-cell RNA sequencing for 3,115 cells from primary bladder cancer (BC159-T#3) and patient-derived xenografts (BC159-T#3-PDX-vehicle and BC159-T#3-PDX-tipifarnib). Matched time-series bulk tumor tissues were also sequenced using whole exome target probe (WES) and whole transcriptome target probe (WTS).
Project description:SMPD4 (neutral sphingomyelinase-3/nSMase3) has recently been shown to be a new cause of microcephaly in a cohort of twenty-three pediatric patients. The function of nSMases in brain development and how SMPD4 variants cause human microcephaly and cerebellar hypoplasia was previously unknown.We developed an iPSC model to complement our mouse study. We found iPSC models from human SMPD4 patient and CRISPR/Cas9-induced SMPD4 knockout lines demonstrate a proliferation defect, increased cell death, loss of neural progenitors, and shortened primary cilia. Treatment with exogenous ceramide significantly rescues the cilia defect. SMPD4 patient and knockout cells have altered WNT signaling. We provide evidence that SMPD4 controls brain development by providing ceramide for primary ciliogenesis, suggesting a novel therapeutic strategy for SMPD4 mediated disease.