Project description:The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Total small RNAs (miRNAs, siRNAs, piRNAs, etc.) were isolated and sequenced from the heads of sensor strain Aedes aegypti mosquitoes, or from the whole bodies of CHIKV-infected Aedes albopictus mosquitoes 8 hours post infection. Mosquitoes were grown at 18C or 28C in replicates of 1 (Ae. aegypti) or 3 (Ae. albopictus).
Project description:Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world’s population at risk. Blocking virus replication in mosquitoes rather than in humans serves as a promising approach to prevent arbovirus transmission, which requires in-depth knowledge of mosquito immunity. By integrating multi-omics data, we identified that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topological associated domain. This Hsf1-sHsp cascade acts as an early response against chikungunya virus (CHIKV) infection and shows pan-antiviral activity in three vector mosquitoes, Aedes aegypti, Aedes albopictus, and Anopheles gambiae. We then assessed the baseline expression of sHsp genes in different tissues of female Ae. aegypti using RNA-seq, and we observed a highly dynamic expression pattern of sHsp genes that varied dramatically across different tissues. Interestingly, sHsp genes were expressed at low levels in two main barrier tissues, the midgut and salivary glands, compared to other tissues such as the crop. Importantly, activation of Hsf1 led to a reduced CHIKV infection rate in adult Ae. aegypti mosquitoes, demonstrating Hsf1 as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Project description:This analysis compare gene expression between 4 day old sugar fed female and male Aedes aegypti mosquitoes. Keywords: Aedes aegypti sex specific expression
Project description:Investigation of whole genome gene expression level changes of testes in the meiotic drive system in aedes aegypti during spermatogenesis compared to non drive strain. The meiotic drive system in Aedes aegypti causes the female determining chromosome to fragment during spermatogenesis. A six chip study using total RNA from three separately extracted non driving strain testes of Aedes aegypti and three separately extracted meiotic drive strain testes of Aedes aegypti.
Project description:Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV can cause painful symptoms during acute and chronic stages of infection. However, the virus-vector interaction has characteristics that allow a persistent infection, not disturbing the mosquito’s fitness. Here, we aimed to clarify aspects of CHIKV infection in Ae. aegypti Aag-2 cells through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). We used MOI 0.1 to infect Aag-2 cells in biological triplicates over 48 h. TEM images show a high load of intracellular viral cargo at 48 hpi, as well as an elongated unusual mitochondria morphology that might indicate a mitochondrial imbalance. Moreover, a total of 196 Ae. aegypti protein groups were up or downregulated upon infection, related to protein synthesis, energy metabolism, signaling pathways and apoptosis. These regulated Aag-2 proteins might have roles in antiviral and/or in pro-viral mechanisms during CHIKV infection, to support the balance between viral propagation and the survival of host cell, leading to the persistent infection.