Project description:This study compared mycorrhizal-associated metabolome alterations across multiple plant-mycorrhizal fungus combinations. Specifically, we inoculated a phylogenetically diverse set of temperate tree species with either arbuscular mycorrhizal or ectomycorrhizal fungi (the two major mycorrhizal lifestyles). Using comprehensive metabolomics approaches, we then assessed the metabolome in mycorrhizal and non-mycorrhizal roots and the corresponding leaves.
Project description:This dataset compared mycorrhizal-associated alterations in the plant primary metabolome across multiple plant-mycorrhizal fungus combinations. Specifically, we inoculated a phylogenetically diverse set of temperate tree species with either arbuscular mycorrhizal or ectomycorrhizal fungi (the two major mycorrhizal lifestyles). We then assessed the primary metabolome in mycorrhizal and non-mycorrhizal roots and the corresponding leaves.
Project description:This study compared mycorrhizal-associated metabolome alterations across multiple plant-mycorrhizal fungus combinations. Specifically, we inoculated a phylogenetically diverse set of temperate tree species with either arbuscular mycorrhizal or ectomycorrhizal fungi (the two major mycorrhizal lifestyles). Using comprehensive metabolomics approaches, we then assessed the metabolome in mycorrhizal and non-mycorrhizal roots and the corresponding leaves.
Project description:This dataset compared mycorrhizal-associated alterations in the plant primary metabolome across multiple plant-mycorrhizal fungus combinations. Specifically, we inoculated a phylogenetically diverse set of temperate tree species with either arbuscular mycorrhizal or ectomycorrhizal fungi (the two major mycorrhizal lifestyles). We then assessed the primary metabolome in mycorrhizal and non-mycorrhizal roots and the corresponding leaves.
Project description:Wood density is a foundamental quality trait for structural timber, bioenergy and pulp industries. We investigated genes differentially transcribed in radiate pine juvneile trees with distinct wood density using cDNA microarrays. Radiata pine trees were selected from a progeny trial planted at Flynn, Australia. Based on the gravitical measurement of wood cores, 12 families with highest and lowest density each were selected, representing two groups of trees with contrasting wood density. One individual with higher or lower density were further sampled in each selected family. Developing xylem tissues of selected trees were sampled in autumn (April) when latewood (LW) was formed. The xylem tissues were scraped at breast height with a sharp chisel after the bark was removed. Wood cores of the sampled trees were further measured using SilviScan 2. Total RNA extracted from ten developing xylem tissues with confirmed distinct density in each tree group were pooled into two bulks (five trees each), and the two bulks of HD were compared with two LD bulks in the microarray experiment (named the bulk experiment). Six developing xylem tissues with the most distinct density from each tree group were further chosen. Six xylem tissues with HD were individually compared with bulked six xylem tissues with LD in the second microarray experiment (named individual experiment). These two different pooling strategies can partly minimize the genetic variation among different genotypes. Dye swaps were applied in each biological replicate.
Project description:The recent release of a large number of genomes from ectomycorrhizal, orchid mycorrhizal and root endophytic fungi have provided deep insight into fungal lifestyle-associated genomic adaptation. Comparative analyses of symbiotic fungal taxa showed that similar outcomes of interactions in distant related root symbioses are examples of convergent evolution. The order Sebacinales represents a sister group to the Agaricomycetes (Basidiomycota) that is comprised of ectomycorrhizal, ericoid-, orchid- mycorrhizal, root endophytic fungi and saprotrophs (Oberwinkler et al., 2013). Sebacinoid taxa are widely distributed from arctic to temperate to tropical ecosystems and are among the most common and species-rich groups of ECM, OM and endophytic fungi (Tedersoo et al., 2012, Tedersoo et al., 2010, Oberwinkler et al., 2013). The root endophyte Piriformospora indica and the orchid mycorrhizal fungus S. vermifera (MAFF 305830) are non-obligate root symbionts which were shown to be able to interact with many different experimental hosts, including the non-mycorrhizal plant Arabidopsis thaliana. These two fungi display similar colonization strategies in barley and in Arabidopsis and the ability to establish beneficial interactions with different hosts (Deshmukh et al., 2006). Colonization of the roots by P. indica and S. vermifera results in enhanced seed germination and biomass production as well as increased resistance against biotic and abiotic stresses in its experimental hosts, including various members of the Brassicaceae family, barley, Nicotiana attenuata and switchgrass (Ghimire, 2011, Ghimire et al., 2009, Ghimire et al., 2011, Waller et al., 2008, Barazani et al., 2007, Deshmukh et al., 2006). Microarray experiments were performed to identify and characterize conserved sebacinoid genes as key determinants in the Sebacinales symbioses.
Project description:The response mechanisms, recognition and specificity of conifer trees during interaction with pathogenic, saprotrophic or symbiotic ectomycorrhizal fungus were investigated. The roots of Pinus sylvestris were challenged for five days with either Heterobasidion annosum (a pathogenic root rot fungus which attacks Norway spruce, Scots pine and broad leaf trees); Laccaria bicolor (an obligate ectomycorrhizal symbiont); or Trichoderma aureoviride (an obligate saprotroph). The gene expression data from cDNA micro-arrays consisting of 2176 Pinus taeda genes were analysed using 2-interconnected mixed linear model statistical approach. The result of the pairwise comparisons of the different treatments against un-inoculated control led to identification of genes specifically differentially expressed in the pathogenic, saprotrophic and symbiotic interactions. The results were compared with similar data obtained for two other interaction stages: 1 and 15 days post inoculation. The result of this comprehensive expression profiling will hopefully shed more light on the mechanistic basis for recognition and response of conifer trees to pathogenic and non-pathogenic fungi. Keywords: stress response
Project description:The response mechanisms, recognition and specificity of conifer trees during interaction with pathogenic, saprotrophic or symbiotic ectomycorrhizal fungus were investigated. The roots of Pinus sylvestris were challenged for fifteen days with either Heterobasidion annosum (a pathogenic root rot fungus which attacks Norway spruce, Scots pine and broad leaf trees); Laccaria bicolor (an obligate ectomycorrhizal symbiont); or Trichoderma aureoviride (an obligate saprotroph). The gene expression data from cDNA micro-arrays consisting of 2176 Pinus taeda genes were analysed using 2-interconnected mixed linear model statistical approach. The result of the pairwise comparisons of the different treatments against un-inoculated control led to identification of genes specifically differentially expressed in the pathogenic, saprotrophic and symbiotic interactions. The results were compared with similar data obtained for two other interaction stages: 1 and 5 days post inoculation. The result of this comprehensive expression profiling will hopefully shed more light on the mechanistic basis for recognition and response of conifer trees to pathogenic and non-pathogenic fungi. Keywords: stress response
Project description:Arbuscular mycorrhiza (AM) interactions between plants and Glomeromycota fungi primarily support phosphate aquisition of most terrestrial plant species. To unravel gene expression in Medicago truncatula root colonization by AM fungi, we used genome-wide transcriptome profiling based on whole mycorrhizal roots. We used GeneChips to detail the global programme of gene expression in response to colonization by arbuscular mycorrhizal fungi and in response to a treatment with phosphate and identified genes differentially expressed during this process. Medicago truncatula roots were harvested at 28 days post inoculation with the two different arbuscular mycorrhizal fungi Glomus intraradices (Gi-Myc) and Glomus mosseae (Gm-Myc) under low phosphate conditions (20 µM phosphate) or after a 28 days treatment with 2 mM phosphate in the absence of arbuscular mycorrhizal fungi (2mM-P). As a control, uninfected roots grown under low phosphate conditions (20 µM phosphate) were used (20miM-P). Three biological replicates consisting of pools of five roots were used for RNA extraction and hybridization on Affymetrix GeneChips.