Project description:Epigenetic mechanisms, such as CpG DNA methylation enable phenotypic plasticity and rapid adaptation to changing environments. CpG DNA methylation is established by DNA methyltransferases (DNMTs), which are well conserved across vertebrates and invertebrates. There are insects with functional DNA methylation despite lacking a complete set of Dnmts. But at least one of the enzymes, DNMT1, appears to be required to maintain an active DNA methylation system. The red flour beetle, Tribolium castaneum, lacks Dnmt3 but possesses Dnmt1 and it has been controversial whether it has a functional DNA methylation system. Using whole genome bisulfite sequencing, we did not find any defined patterns of CpG DNA methylation in embryos. Nevertheless, we found Dnmt1 expressed throughout the entire life cycle of the beetle, with mRNA transcripts significantly more abundant in eggs and ovaries. A maternal knockdown of Dnmt1 caused a developmental arrest in offspring embryos. We show that Dnmt1 plays an essential role in T. castaneum embryos and that its downregulation leads to an early developmental arrest. This function appears to be unrelated to DNA methylation, since we did not find any evidence for this modification. This strongly suggests an alternative role of this protein.
Project description:Genome-wide survey of transcriptional differences between males and females of Tribolium castaneum, the red flour beetle Four biological replicates for male and female beetles with 20 individuals per replicate. Two technical replicates, one replicate per sex. 16,434 genes/expressed non-coding regions represented twice on each array. Three 60 mer probes for most exons/expressed non-coding regions. 167,538 unique genomic probes replicated twice per array.
Project description:16S amplicon pool analyses of the four gut sections of the wood-feeding beetle, Odontotaenius disjunctus The beetle is purely wood feeding, and we aim to first characterize the community that exist within the gut sections 4 beetles, four gut sections per beetle, one PhyloChip per gut section, total = 16 chips
Project description:We report the transcriptional response to Colorado potato beetle herbivory in leaves of the highly beetle resistant Solanum chacoense diploid line USDA8380-1 (80-) and a susceptible F2 individual (EE501F2_093) derived from a cross between 80-1 and a beetle susceptible line S. chacoense M6. Sampling tissue in a time course during adult Colorado potato beetle feeding provides novel insight to the transcriptomic defense response to this important pest.