Project description:PD-1 blockade has demonstrated impressive clinical outcomes in colorectal cancers that have high microsatellite instability. However, the therapeutic efficacy for patients with tumors with low microsatellite instability or stable microsatellites needs further improvement. Here, we have demonstrated that low-dose decitabine could increase the expression of immune-related genes such as major histocompatibility complex genes and cytokine-related genes as well as the number of lymphocytes at the tumor site in CT26 colorectal cancer-bearing mice. A more significant inhibition of tumor growth and a prolongation of survival were observed in the CT26 mouse model after treatment with a combination of PD-1 blockade and decitabine than in mice treated with decitabine or PD-1 blockade alone. The anti-tumor effect of the PD-1 blockade was enhanced by low-dose decitabine. The results of RNA sequencing and whole-genome bisulfite sequencing of decitabine-treated CT26 cells and tumor samples with microsatellite stability from the patient tumor-derived xenograft model have shown that many immune-related genes, including antigen processing and antigen-presenting genes, were upregulated, whereas the promoter demethylation was downregulated after decitabine exposure. Therefore, decitabine-based tumor microenvironment re-modulation could improve the effect of the PD-1 blockade. The application of decitabine in PD-1 blockade-based immunotherapy may elicit more potent immune responses, which can provide clinical benefits to the colorectal cancer patients with low microsatellite instability or stable microsatellites.
Project description:PD-1 blockade has demonstrated impressive clinical outcomes in colorectal cancers that have high microsatellite instability. However, the therapeutic efficacy for patients with tumors with low microsatellite instability or stable microsatellites needs further improvement. Here, we have demonstrated that low-dose decitabine could increase the expression of immune-related genes such as major histocompatibility complex genes and cytokine-related genes as well as the number of lymphocytes at the tumor site in CT26 colorectal cancer-bearing mice. A more significant inhibition of tumor growth and a prolongation of survival were observed in the CT26 mouse model after treatment with a combination of PD-1 blockade and decitabine than in mice treated with decitabine or PD-1 blockade alone. The anti-tumor effect of the PD-1 blockade was enhanced by low-dose decitabine. The results of RNA sequencing and whole-genome bisulfite sequencing of decitabine-treated CT26 cells and tumor samples with microsatellite stability from the patient tumor-derived xenograft model have shown that many immune-related genes, including antigen processing and antigen-presenting genes, were upregulated, whereas the promoter demethylation was downregulated after decitabine exposure. Therefore, decitabine-based tumor microenvironment re-modulation could improve the effect of the PD-1 blockade. The application of decitabine in PD-1 blockade-based immunotherapy may elicit more potent immune responses, which can provide clinical benefits to the colorectal cancer patients with low microsatellite instability or stable microsatellites.
Project description:PD-1 blockade has demonstrated impressive clinical outcomes in colorectal cancers that have high microsatellite instability. However, the therapeutic efficacy for patients with tumors with low microsatellite instability or stable microsatellites needs further improvement. Here, we have demonstrated that low-dose decitabine could increase the expression of immune-related genes such as major histocompatibility complex genes and cytokine-related genes as well as the number of lymphocytes at the tumor site in CT26 colorectal cancer-bearing mice. A more significant inhibition of tumor growth and a prolongation of survival were observed in the CT26 mouse model after treatment with a combination of PD-1 blockade and decitabine than in mice treated with decitabine or PD-1 blockade alone. The anti-tumor effect of the PD-1 blockade was enhanced by low-dose decitabine. The results of RNA sequencing and whole-genome bisulfite sequencing of decitabine-treated CT26 cells and tumor samples with microsatellite stability from the patient tumor-derived xenograft model have shown that many immune-related genes, including antigen processing and antigen-presenting genes, were upregulated, whereas the promoter demethylation was downregulated after decitabine exposure. Therefore, decitabine-based tumor microenvironment re-modulation could improve the effect of the PD-1 blockade. The application of decitabine in PD-1 blockade-based immunotherapy may elicit more potent immune responses, which can provide clinical benefits to the colorectal cancer patients with low microsatellite instability or stable microsatellites.
Project description:PD-1 blockade has demonstrated impressive clinical outcomes in colorectal cancers that have high microsatellite instability. However, the therapeutic efficacy for patients with tumors with low microsatellite instability or stable microsatellites needs further improvement. Here, we have demonstrated that low-dose decitabine could increase the expression of immune-related genes such as major histocompatibility complex genes and cytokine-related genes as well as the number of lymphocytes at the tumor site in CT26 colorectal cancer-bearing mice. A more significant inhibition of tumor growth and a prolongation of survival were observed in the CT26 mouse model after treatment with a combination of PD-1 blockade and decitabine than in mice treated with decitabine or PD-1 blockade alone. The anti-tumor effect of the PD-1 blockade was enhanced by low-dose decitabine. The results of RNA sequencing and whole-genome bisulfite sequencing of decitabine-treated CT26 cells and tumor samples with microsatellite stability from the patient tumor-derived xenograft model have shown that many immune-related genes, including antigen processing and antigen-presenting genes, were upregulated, whereas the promoter demethylation was downregulated after decitabine exposure. Therefore, decitabine-based tumor microenvironment re-modulation could improve the effect of the PD-1 blockade. The application of decitabine in PD-1 blockade-based immunotherapy may elicit more potent immune responses, which can provide clinical benefits to the colorectal cancer patients with low microsatellite instability or stable microsatellites.
Project description:Colorectal cancer (CRC), a malignant tumor worldwide consists of microsatellite instability (MSI) and microsatellite stable (MSS) phenotypes. Although SHP2 is a potential target for cancer therapy, its relationship with innate immunosuppression remains elusive. To address that, single-cell RNA sequencing was performed to explore the role of SHP2 in all cell types of tumor microenvironment (TME) from murine MC38 xenografts.
Project description:Colorectal cancer is a heterogeneous disease molecularly characterized by inherent genomic instabilities, chromosome instability and microsatellite instability. In the present study we propose transcriptome instability as an analogue to genomic instability on the transcriptome level. Exon microarray data from two independent series of altoghether 160 colorectal cancer tissue samples was used for global alternative splicing detection using the FIRMA algorithm (aroma.affymetrix). The sample-wise amounts of these alternative splicing scores exceeding a defined threshold (deviating exon usage amounts) were summarized to provide the basis for description of transcriptome instability. This characteristic was shown to be associated with splicing factor expression levels and patient survival in both independent sample series. We analyzed genome-wide expression at the exon-level for two independent series of colorectal cancer tissue biopsies using the Affymetrix Human Exon 1.0 ST platform. This series of samples represents the validation series.
Project description:Colorectal cancer is a heterogeneous disease molecularly characterized by inherent genomic instabilities, chromosome instability and microsatellite instability. In the present study we propose transcriptome instability as an analogue to genomic instability on the transcriptome level. Exon microarray data from two independent series of altoghether 160 colorectal cancer tissue samples was used for global alternative splicing detection using the FIRMA algorithm (aroma.affymetrix). The sample-wise amounts of these alternative splicing scores exceeding a defined threshold (deviating exon usage amounts) were summarized to provide the basis for description of transcriptome instability. This characteristic was shown to be associated with splicing factor expression levels and patient survival in both independent sample series. We analyzed genome-wide expression at the exon-level for two independent series of colorectal cancer tissue biopsies using the Affymetrix Human Exon 1.0 ST platform. This series of samples represents the test series.
Project description:Microsatellite instability (MSI), caused by defective mismatch repair, is observed in a subset of colorectal cancers (CRCs). We evaluated somatic mutations in microsatellite repeats of genes chosen based on reduced expression in MSI CRC and existence of a coding mononucleotide repeat. Expression profiling of 34 MSI colorectal cancers and 15 normal colonic mucosas was performed in 2002. Comparison of malignant and healthy tissue.
Project description:Colorectal cancer (CRC), among the major cancer types in western world is responsible for 10% of cancer related deaths, often due to late detection when the tumor has already spread out of the colon. Surgery is the mainstay curative treatment for CRC. Nevertheless, between 15-30% of stage II and III patients develop hepatic metastasis within 5 years. Paradoxically, tumor surgery can contribute to the metastatic process, due to inflammatory mediator release in response to surgery, which promotes the metastatic ability of cancer cells. During surgery, bacterial products, such as LPS, from commensal bacteria translocate across the bowel wall, reach systemic circulation and induce an inflammatory response through to the activation of the Nuclear Factor-ĸB (NF-ĸB) pathway. Inflammation promotes malignant transformation by inducing chromosomal and microsatellite instability or CpG island methylation [14], but its direct effect on cancer cells and contribution to metastasis development remains to be elucidated. In this experiment we mimic the perioperative microenvironment where bacterial products get in contact with CRC cancer cells. We assessed the identity of the secreted proteins, including those released through extracellular vesicles (EV), of six CRC cell lines once exposed to lipopolysaccharide (LPS).
Project description:Background. Colorectal cancer develops through two main genetic instability pathways characterized by distinct pathologic features and clinical outcome. Results. We investigated colon cancer samples (23 characterized by microsatellite stability, MSS, and 16 by high microsatellite instability, MSI-H) for genome-wide expression of microRNA (miRNA) and mRNA. Based on combined miRNA and mRNA gene expression, a molecular signature consisting of twenty seven differentially expressed genes, inclusive of 8 miRNAs, could correctly distinguish MSI-H versus MSS colon cancer samples. Among the differentially expressed miRNAs, various members of the oncogenic miR-17-92 family were significantly up-regulated in MSS cancers. The majority of protein coding genes were also up-regulated in MSS cancers. Their functional classification revealed that they were most frequently associated with cell cycle, DNA replication, recombination, repair, gastrointestinal disease and immune response. Conclusions. This is the first report that indicates the existence of differences in miRNA expression between MSS versus MSI-H colorectal cancers. In addition, the work suggests that the combination of mRNA/miRNA expression signatures may represent a general approach for improving bio-molecular classification of human cancer.