Project description:Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium Candidatus Liberibacter spp. In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 30,171 sets expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. Young, healthy Valencia sweet orange (C. sinensis) plants were graft inoculated with budwood from Ca. L. asiaticus-infected citrus plants. Prior to the innocualtion, the plants were confirmed to be Ca. L. asiaticus-free in ordinary and quantitative PCR tests. The presence of the bacteria in the inoculated plants was confirmed in both conventional and quantitative PCR with specific primers to Ca. L. asiaticus. The stem and root samples used for RNA extraction and hybridization on Affymetrix microarrays were obtained from three symptomatic and three healthy control trees of similar size, approximately 1 year after inoculation.
Project description:Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium Candidatus Liberibacter spp. In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 30,171 sets expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories.
Project description:Pathogens can trigger a broad array of changes in gene expression in plants. In this study we report the changes in gene expression patterns that occurred when greenhouse grown Washington Navel oranges (C. sinensis) was graft innoculated with citrus pathogens. Candidatus Liberibacter asiaticus, Spiroplasma citri, and two isolates of citrus tristeza virus were studied.
Project description:We evaluated the effect on citrus trees of two newly-identified molecules, benzbromarone and tolfenamic acid, used as antimicrobials in commercial groves of sweet orange (Citrus sinensis). We delivered the molecules by trunk injection and evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses.
Project description:Background: MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Here, we sequenced two small RNA libraries from B-deficient and -sufficient (control) Citrus sinensis leaves, respectively, using Illumina sequencing in order to identify the potential miRNAs related to the tolerance of citrus to B-deficiency. Results: Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) downregulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced downregulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity. Conclusions: Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.
Project description:Candidatus Liberibacter asiaticus infection of citrus is characterized by symptom variability within and among organs. In order to identify molecular processes involved in the regulation of organ response to Ca. Liberibacter infection, the gene expression patterns in C. sinensis leaf, stem, and root was examined in Affymetrix microarray. Our analyses showed that Ca. L. asiaticus reprograms several cellular and metabolic processes in C. sinensis, with most categories regulated in leaves, followed by stems and least in roots. Among them, we identified genes whose expression is regulated in organ-specific manner, reflecting organ specialization in the molecular response to Ca. L. asiaticus. Differences in gene expression were expected between these organs because of functional divergence among them. Two-year old Valencia sweet orange (C. sinensis) plants were graft inoculated with budwood from Ca. L. asiaticus-infected citrus plants. Successful infection of the inoculated plants was confirmed in both conventional and quantitative PCR with specific primers to Ca. L. asiaticus. The stem and root samples used for RNA extraction and hybridization on Affymetrix microarrays were obtained from three symptomatic and three healthy control trees of similar size, 16 months after the inoculation.