Project description:Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a fast and convenient method to amplify and identify the transcripts of a targeted pathogen. We combined bioinformatic and experimental analyses to improve the RT-LAMP assay performance for COVID-19 diagnosis. First, we developed an improved algorithm to design LAMP primers targeting the nucleocapsid (N), membrane (M), and spike (S) genes of SARS-CoV-2. Next, we rigorously validated these new assays for their efficacy and specificity. Further, we demonstrated that multiplexed RT-LAMP assays could directly detect as low as a few copies of SARS-CoV-2 RNA in saliva, without the need of RNA isolation. Importantly, further testing using saliva samples from COVID-19 patients indicated that the new RT-LAMP assays were in total agreement in sensitivity and specificity with standard RT-qPCR. In summary, our new LAMP primer design algorithm along with the validated assays provide a fast and reliable method for the diagnosis of COVID-19 cases.
Project description:We combined RT-LAMP with deep sequencing to detect as few as 5–10 virions of SARS-CoV-2 in unprocessed human saliva. Based on a multi-dimensional barcoding strategy, COV-ID can be used to test thousands of samples overnight in a single sequencing run with limited labor and laboratory equipment. The sequencing-based readout allows COV-ID to detect multiple amplicons simultaneously, including key controls such as host transcripts and artificial spike-ins, as well as multiple pathogens. Here we demonstrate this flexibility by simultaneous detection of 4 amplicons in contrived saliva samples: SARS-CoV-2, influenza A, human STATHERIN, and an artificial SARS spike-in. The approach was validated on clinical saliva samples, where it showed 100% agreement with RT-qPCR. COV-ID can also be performed directly on saliva adsorbed on filter paper, simplifying collection logistics and sample handling.
Project description:BackgroundThe coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has killed millions of people worldwide. The current crisis has created an unprecedented demand for rapid test of SARS-CoV-2 infection.MethodsReverse transcription loop-mediated isothermal amplification (RT-LAMP) is a fast and convenient method to amplify and identify the transcripts of a targeted pathogen. However, the sensitivity and specificity of RT-LAMP were generally regarded as inferior when compared with the gold standard RT-qPCR. To address this issue, we combined bioinformatic and experimental analyses to improve the assay performance for COVID-19 diagnosis.FindingsFirst, by experimental screening as well as high-throughput sequencing studies, we discovered new primer features that impacted LAMP sensitivity and specificity. These features were then used to build an improved bioinformatics algorithm to design LAMP primers targeting SARS-CoV-2. We further rigorously validated these new assays for their efficacy and specificity. We demonstrated that multiplexed RT-LAMP assay could directly detect as low as 1.5 copies/µL of SARS-CoV-2 particles in saliva, without the need of RNA isolation. We further tested this ultra-sensitive and specific RT-LAMP assay using saliva samples from COVID-19 patients. Clinical validation results indicated that the new RT-LAMP assay was comparable to standard RT-qPCR in overall assay sensitivity and specificity.InterpretationIn summary, our new LAMP primer design algorithm along with the validated assays provide a fast and reliable method for the diagnosis of COVID-19 cases.FundingNational Institutes of Health.
Project description:The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic demanded rapid diagnosis to isolate new COVID-19 cases and prevent disease transmission. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) rapidly became the gold standard for diagnosis. However, due to the high cost and delay of the results, other types of diagnosis were implemented, such as COVID-19 Ag Rapid Tests and Reverse Transcription Technique followed by Loop-Mediated isothermal Amplification (RT-LAMP). In this work, we validated the use of RT-LAMP in saliva samples rather than nasopharyngeal swabs, as the collection is more comfortable. First, we selected 5 primer sets based on the limit of detection for SARS-CoV-2 RNA, then validated their sensitivity and specificity in patient samples. A total of 117 samples were analyzed by fluorometric RT-LAMP and compared with qRT-PCR results. Our results show that the use of a high-sensitive primer ORF1-a, together with a low-sensitive primer set Gene E (time to threshold of 22.9 and 36.4 minutes, respectively, using 200 copies of viral RNA), achieved sensitivity in purified RNA from saliva samples of 95.2% (95% CI 76.1‒99.8) with 90.5% specificity (95% CI 69.6‒98.8) (n = 42).As RNA purification increases the turnaround time, we tested the outcome of RT-LAMP utilizing raw saliva samples without purification. The test achieved a sensitivity of 81.8% (95% CI 59.7‒94.8) and a specificity of 90.9% (95% CI 70.8‒98.8). As a result, the accuracy of 92.9% (95% CI 80.5‒98.5) in purified RNA-saliva samples was lowered to an acceptable level of 86.4% (95% CI 72.6‒94.8) in raw saliva. Although mass vaccination has been implemented, new strains and low vaccination progress helped to spread COVID-19. This study shows that it is feasible to track new COVID-19 cases in a large population with the use of raw saliva as sample in RT-LAMP assay which yields accurate results and offers a less invasive test.
Project description:Reverse transcriptases (RTs) are a family of enzymes synthesizing DNA using RNA as a template and serving as indispensable tools in studies related to RNA. M-MuLV RT and its analogs are the most commonly used RTs. RTs are widely applied in various diagnostics methods, including reverse-transcription loop-mediated isothermal amplification (RT-LAMP). However, the performance of different RTs in LAMP remains relatively unknown. Here, we report on the first direct comparison of various M-MuLV RTs in RT-LAMP, including enzymes with a different number of mutations and fusions with Sto7d. Several parameters were assessed, namely: optimal reaction temperature, enzyme concentration, reverse transcription time, a minimal amount of RNA template, and tolerance to inhibitors. Mutations increased the optimal reaction temperature from 55 °C to 60-65 °C. All of the RTs were suitable for RT-LAMP with RNA templates in the range of 101-106 copies per reaction. Highly mutated enzymes were 1.5-3-fold more tolerant to whole blood, blood plasma, and guanidinium, but they were two-fold more sensitive to high concentrations of NaCl. The comparison of different RTs presented here could be helpful for selecting the optimal enzyme when developing novel LAMP-based diagnostic tests.
Project description:BackgroundThe current methods for detecting Mycobacterium tuberculosis (Mtb) are not clinically optimal. Standard culture methods (SCMs) are slow, costly, or unreliable, and loop-mediated isothermal amplification (LAMP) cannot differentiate live Mtb.MethodsThis study compared reverse transcription (RT)-LAMP, LAMP, and an SCM for detecting Mtb. A first experiment tested the sensitivity and specificity of primers for 9 species of Mycobacterium (H37Rv, M. intracellulare, M. marinum, M. kansasii, M. avium, M. flavescens, M. smegmatis, M. fortuitum, and M. chelonae); and 3 non-Mycobacterium species (Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae). A second experiment tested sputum specimens for the presence of Mtb, from 100 patients with tuberculosis (clinical) and 22 from patients without tuberculosis (control), using Roche solid culture (SCM), LAMP, and RT-LAMP. In the clinical samples.ResultsThe rates of positivity for Mtb of the SCM, LAMP, and RT-LAMP methods were 88%, 92%, and 100%, respectively. The difference in detection rate was significant between RT-LAMP and SCM, but RT-LAMP and LAMP were comparable. In the control group, the detection rates were nil for all three methods.ConclusionThe specificities of the methods were similar. The sensitivity of RT-LAMP was ~10-fold higher than that of LAMP for detecting Mtb. Unlike LAMP, RT-LAMP could identify viable bacteria, and was able to detect a single copy of Mtb. Among SCM, LAMP, and RT-LAMP, the latter is the most suitable for wide use in the lower-level hospitals and clinics of China for detecting Mtb in sputum samples.
Project description:A rapid, cost-effective diagnostic test for the detection of acute HIV-1 infection is highly desired. Isothermal amplification techniques, such as reverse-transcription loop-mediated isothermal amplification (RT-LAMP), exhibit characteristics that are ideal for the development of a rapid nucleic acid amplification test (NAAT) because they are quick, easy to perform and do not require complex, dedicated equipment and laboratory space. In this study, we assessed the ability of the HIV-1 RT-LAMP assay to detect acute HIV infection as compared to a representative rapid antibody test and several FDA-approved laboratory-based assays. The HIV-1 RT-LAMP assay detected seroconverting individuals one to three weeks earlier than a rapid HIV antibody test and up to two weeks earlier than a lab-based antigen/antibody (Ag/Ab) combo enzyme immunoassay (EIA). RT-LAMP was not as sensitive as a lab-based qualitative RNA assay, which could be attributed to the significantly smaller nucleic acid input volume. To our knowledge, this is the first demonstration of detecting acute HIV infection using the RT-LAMP assay. The availability of a rapid NAAT, such as the HIV-1 RT-LAMP assay, at the point of care (POC) or in laboratories that do not have access to large platform NAAT could increase the percentage of individuals who receive an acute HIV infection status or confirmation of their HIV status, while immediately linking them to counseling and medical care. In addition, early knowledge of HIV status could lead to reduced high-risk behavior at a time when individuals are at a higher risk for transmitting the virus.
Project description:Our aim was to evaluate the analytical and clinical performance of the SARS-CoV-2 molecular detection kits used in Argentina. Nine real-time reverse-transcription polymerase chain reaction (RT-qPCR) and three reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assays were evaluated using the World Health Organization (WHO) recommended test as reference method. A secondary standard calibrated for the E, N and RdRp genes against the Pan American Health Organization-World Health Organization-International Standard was used to calculate the limit of detection (LoD). A panel of artificial clinical samples, 32 positive and 30 negative for SARS-CoV-2, were analyzed to estimate the kappa concordance (κ) and the diagnostic performance. Differences among the LoD values for the target genes amplified by each kit were >1 log copies/reaction. The κ for the RT-qPCR kits was greater than 0.9, whereas that for the RT-LAMP assays ranged from 0.75 to 0.93. The clinical performance of RT-qPCR kits showed 100% specificity and high sensitivity, although with variations according to the gene analyzed. The E and N genes provided greater clinical sensitivity, whereas the RdRp gene increased the clinical specificity. The RT-LAMP assays revealed a variable diagnostic performance. The information provided can be useful to choose the most appropriate diagnostic test and may contribute to the establishment of a consensus in the diagnosis of SARS-CoV-2 in Argentina and the region.