Project description:Translation elongation stalling has the potential to produce toxic truncated protein fragments. Translation of either non-stop mRNA or transcripts coding for poly-basic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. During this process, the stalled ribosome is dissociated into subunits, and the polypeptide is ubiquitinated by the E3 ubiquitin ligase Listerin on the 60S large ribosomal subunit, leading to subsequent proteasomal degradation. However, it is largely unknown how the specific stalled ribosomes are recognized as aberrant to engage the RQC system. Here, we report that ubiquitination of the ribosomal protein uS10 of the 40S small ribosomal subunit, by the E3 ubiquitin ligase Hel2 (or RQC-trigger (Rqt) 1) initiates RQC. We identified a novel RQC-trigger (RQT) complex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlated with sensitivity to anisomycin, which stalls ribosome at the rotated form, suggesting that RQT factors rescue ribosomes stalled by this drug. Our un-biased survey by ribosome profiling revealed that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits. Our results provide mechanistic insight into the surveillance system for aberrant proteins induced by ribosome stalling and mediated by ribosome ubiquitination.
Project description:The recycling of ribosomal subunits after translation termination is critical for efficient gene expression. Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR) function as 40S recycling factors in vitro, but it is unknown whether they perform this function in vivo or serve as alternative initiation factors. Ribosome profiling of strains missing these factors revealed 80S ribosomes queued behind the stop codon, consistent with a block in 40S recycling. We found that unrecycled ribosomes could reinitiate translation at AUG codons in the 3’UTR, as evidenced by peaks in the footprint data and 3’UTR reporter analysis. In vitro translation experiments using reporter mRNAs containing upstream ORFs (uORFs) further established that reinitiation increased in the absence of these proteins. In some cases, 40S ribosomes appeared to rejoin with 60S subunits and undergo an alternative 80S reinitiation process in 3’UTRs. These results support a crucial role for Tma64, Tma20, and Tma22 in the recycling of 40S ribosomal subunits at stop codons and translation reinitiation.
Project description:Translation elongation rates are regulated to ensure proper conformation and biological function of proteins. Translation of either non-stop mRNA or transcripts coding for poly-basic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control system (RQC). During this process, the stalled ribosome is dissociated into subunits, and the polypeptide is ubiquitinated by the E3 ubiquitin ligase Listerin on the 60S large ribosomal subunit (LSU) leading to subsequent proteasomal degradation. However, it is largely unknown how stalled ribosomes are recognized and dissociated into subunits. Here we report that ubiquitination of the ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 is required for the production of the RQC substrate. RQC-trigger (RQT) factors, a RNA helicase-family protein Slh1/Rqt2, ubiquitin binding protein Cue3/Rqt3 and yKR023W/Rqt4, were also required for the primary steps of RQC, and associated with Hel2-ribosome complexes. Rqt2-4 factors were dispensable for the ubiquitination of uS10 by Hel2/Rqt1 and associated with ribosomes independent of the ubiquitination of uS10. However, the ubiquitin-binding activity of Rqt3 were crucial to trigger RQC. Cryo-electron microscopy (cryo-EM) analysis revealed that Hel2 bound ribosomes are in an rotated state containing hybrid state AP- and PE-tRNAs. Furthermore, ribosome profiling revealed that short footprints, hallmarks of hybrid state ribosomes18, were accumulated at tandem CGA rare codons at the beginning of the poly arginine stalling sequence and long footprints at subsequent codons, respectively. Short footprints at CGA codons were decreased in rqt1 mutant but drastically increased in uS10 mutants defective in the ubiquitination or rqt2 mutant. Collectively, our results demonstrate that Hel2 stabilizes ratcheted ribosomes leading to ubiquitination of uS10. Subsequently, Rqt2-4 factors target these hybrid state ribosomes specifically, allowing subsequent RQC reactions.
Project description:The budding yeast E3 SUMO ligase Mms21, a component of the Smc5-6 complex, regulates sister chromatid cohesion, DNA replication, and DNA repair. We identify a role for Mms21 in ribosome biogenesis. The mms21RINGD mutant exhibits reduced rRNA production, nuclear accumulation of 60S and 40S ribosomal proteins, and elevated Gcn4 translation. Genes involved in ribosome biogenesis and translation are down-regulated in the mms21RINGD mutant. Examining gene expression profile of mms21RINGD mutant compared to wild-type by RNA Seq using Ilumina sequencing
Project description:The budding yeast E3 SUMO ligase Mms21, a component of the Smc5-6 complex, regulates sister chromatid cohesion, DNA replication, and DNA repair. We identify a role for Mms21 in ribosome biogenesis. The mms21RINGD mutant exhibits reduced rRNA production, nuclear accumulation of 60S and 40S ribosomal proteins, and elevated Gcn4 translation. Genes involved in ribosome biogenesis and translation are down-regulated in the mms21RINGD mutant.
Project description:The life cycle of the ribosome is highly regulated by ubiquitination and deubiquitination events that are remarkably well conserved across the evolutionary scale. We uncover the role of the ovarian tumor (OTU)-class deubiquitinase OTUD6 in setting the level of protein translation by deubiquitination of the RPS7/eS7 subunit of the 40S ribosome in vivo in Drosophila, using endogenously tagged wild-type and mutant proteins. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies revealed the 40S ribosomal protein RPS7 as the major OTUD6 ribosomal substrate. OTUD6 genetically interacts with the 40S protein RACK1 and the ubiquitin E3 ligases CNOT4 and RNF10 to set alkylation stress sensitivity by regulating the level of RPS7 monoubiquitination. OTUD6 specifically interacts with RPS7 on the free 40S subunit, and not on translation initiation complexes or the 80S translating ribosome. Moreover, mRNAs are depleted of free 40S ribosomal subunits in catalytically inactive OTUD6 flies. OTUD6 bidirectionally promotes the global level of protein translation through its action on RPS7. OTUD6 protein is itself regulated by different physiological conditions and stressors to lower the level of RPS7 monoubiquitination and increase the level of protein translation. We propose that OTUD6 promotes translation initiation, the rate limiting step in protein translation, by titering the availability of 40S subunits for forming the 43S preinitiation complex.
Project description:We present a genome-wide assessment of small open reading frames (smORF) translation by ribosomal profiling of polysomal fractions in Drosophila S2 cell. In this way, mRNAs bound by multiple ribosomes and hence actively translated can be isolated and distinguished from mRNAs bound by sporadic, putatively non-productive single ribosomes or ribosomal subunits. Ribosomal profiling of large and small polysomal fractions in Drosophila S2 cells to assess translation of smORFs
Project description:The Ccr4-Not complex containing the Not4 ubiquitin ligase regulates gene transcription and mRNA decay, yet it also has poorly defined roles in translation, proteostasis, and endolysosomal-dependent nutrient signaling. To define how Ccr4-Not mediated ubiquitin signaling regulates these additional processes, we performed quantitative proteomics in the yeast Saccharomyces cerevisiae lacking the Not4 ubiquitin ligase and in cells overexpressing either wild-type or functionally inactive ligase. Herein, we provide evidence that both increased and decreased Ccr4-Not ubiquitin signaling disrupts ribosomal protein (RP) homeostasis independently of reduced RP mRNA changes or reductions in known Not4 ribosomal substrates. Surprisingly, we also find that Ccr4-Not inhibits 40S ribosomal autophagy through Not4-dependent ubiquitin signaling and the additional Ccr4 subunit. This 40S autophagy is independent of canonical Atg7-dependent macroautophagy, thus indicating microautophagy activation is responsible. Furthermore, the Not4 ligase genetically interacts with endolysosomal pathway effectors to control both RP expression and 40S autophagy efficiency. Overall, we demonstrate that balanced Ccr4-Not ligase activity maintains RP homeostasis, and that Ccr4-Not ubiquitin signaling interacts with the endolysosomal pathway to regulate RP expression and inhibit 40S ribosomal autophagy.
Project description:Growing evidence suggests that ribosomes selectively regulate translation of
specific mRNA subsets. Here, quantitative proteomics and cryo-electron microscopy
demonstrated that poxvirus infection does not alter ribosomal subunit protein (RP)
composition but skews 40S rotation states and displaces the 40S head domain.
Genetic knockout screens employing metabolic assays and a dual-reporter virus
further identified two RPs that selectively regulate non-canonical translation of late
poxvirus mRNAs which contain unusual 5 polyA-leaders: RACK1 and RPLP2.
RACK1 is a component of the altered 40S head domain while RPLP2 is a subunit of
the P-stalk, wherein RPLP0 anchors two heterodimers of RPLP1 and RPLP2 to the
large 60S subunit. RPLP0 was required for global translation, yet RPLP1 was
dispensable while RPLP2 was specifically required for non-canonical poxvirus
protein synthesis. Combined, we demonstrate that poxviruses structurally customize
ribosomes and become reliant upon traditionally non-essential RPs from both
ribosomal subunits for efficient initiation on their late mRNAs.
Project description:mRNAs bound by ribosomes from yeast cells were analysed in order to determine the exact position of ribosomes in the presence or absence of Rio1p. Beside total Ribosome Protected Fragments (RPFs), RPFs from mRNAs protected by immature pre-40S pre-ribosomes was also analysed. The analysis showed that immature 40S ribosomes can carry out translation and their premature entry into translation is hindered by Rio1p.