Project description:The utility of RADseq in an experimental setting is also demonstrated, based on our chasacterisation of an APOBEC mutation signature in an APOBEC3A transfected mouse cell line. 0D5 cells, derived from SSM3 cells, were co-transfected with a mixture containing pcDNA3.1 vectors expressing either APOBEC3A or APOBEC3B (kindly donated by Vincent Caval), pcDNA3.1 construct expressing deaminase null APOBEC3A linked to a uracil deglycosylase construct and a plasmid encoding mutant GFP and WT mCherry that is a reporter for APOBEC mutagenesis. Cells were grown, and gDNA extracted, prior to preparation of RADseq libraries using a PstI- MspI double-digest. Libraries underwent a Pippin Prep to select fragments in the size range of 220-520 bp (genomic sequence plus 148 bp of adapters). Single-end sequencing (1x101bp) was performed on an Illumina NovaSeq6000 utilizing v1.5 chemistry. Reads were aligned to mm10 using bwa mem and variants called using the GATK4 pipeline.
Project description:Genotyping studies suggest that there is genetic variability among P. gingivalis strains, however the extent of variability remains unclear, and the regions of variability have only partially been identified. We previously used heteroduplex analysis of the ribosomal operon intergenic spacer region (ISR) to type P. gingivalis strains in several diverse populations, identifying 6 predominant heteroduplex types and many minor ones. In addition we used ISR sequence analysis to determine the relatedness of P. gingivalis strains to one another, and demonstrated a link between ISR sequence phylogeny and the disease-associated phenotype of P. gingivalis strains. The availability of whole genome microarrays based on the genomic sequence of strain W83 has allowed a more comprehensive analysis of P. gingivalis strain variability, using the entire genome. The objectives of this study were to define the phylogeny of P. gingivalis strains using the entire genome, to compare the phylogeny based on genome content to the phylogeny based on a single locus (ISR), and to identify genes that are associated with the strongly disease-associated strain W83 that could be important for virulence. Keywords: Comparative genomic hybridization
Project description:Genome-wide SNP genotyping array can genotyped SNP highthroughly. It can be used in many aspects, such as phylogeny relationships, genome-wide association studies, copy number identification.