Project description:Genome-wide DNA methylation profiling of whole blood cells. The Illumina Infinium HumanMethylation450 microarray was used. Two children's cohorts were studied: 17 children with Down syndrome (DS) and 17 typically developing children (TD)
Project description:Down syndrome is characterized by a wide spectrum of clinical signs, which include cognitive and endocrine disorders and haematological abnormalities. Although it is well established that the causative defect of Down syndrome is the trisomy of chromosome 21, the molecular bases of Down syndrome phenotype are still largely unknown. We used the Infinium HumanMethylation450 BeadChip to investigate DNA methylation patterns in whole blood from 29 subjects affected by Down syndrome (DS), using their healthy relatives as controls (mothers and unaffected siblings). This family-based model allowed us to monitor possible confounding effects on DNA methylation patterns deriving from genetic and environmental (lifestyle) factors. The identified epigenetic signature of Down syndrome includes differentially methylated regions that, although enriched on chromosome 21, interest most of the other chromosomes and can be functionally linked to the developmental and haematological defects characteristic of the disease.
Project description:Down syndrome is characterized by a wide spectrum of clinical signs, which include cognitive and endocrine disorders and haematological abnormalities. Although it is well established that the causative defect of Down syndrome is the trisomy of chromosome 21, the molecular bases of Down syndrome phenotype are still largely unknown. We used the Infinium HumanMethylation450 BeadChip to investigate DNA methylation patterns in whole blood from 29 subjects affected by Down syndrome (DS), using their healthy relatives as controls (mothers and unaffected siblings). This family-based model allowed us to monitor possible confounding effects on DNA methylation patterns deriving from genetic and environmental (lifestyle) factors. The identified epigenetic signature of Down syndrome includes differentially methylated regions that, although enriched on chromosome 21, interest most of the other chromosomes and can be functionally linked to the developmental and haematological defects characteristic of the disease. DNA was extracted from whole peripheral blood using the QIAamp 96 DNA Blood Kit (QIAGEN) and quantified by Quant-iT™ PicoGreen (Invitrogen). Sodium bisulphite conversion of 500 ng of each sample was performed using the EZDNA Methylation-Gold Kit according to the manufacturer's recommendation for Illumina Infinium Assay. 4 ul of bisulfite converted DNA were hybridized on Infinium HumanMethylation 450 BeadChip, following manufacturer’s instructions. Arrays were scanned by HiScan SQ scanner (Illumina) and the intensities of the images were extracted using GenomeStudio (2010.3) Methylation module (1.8.5) software. Methylation levels of each CpG is reported as beta value.
Project description:To identify differentially expressed genes that might be of pathogenetic importance for the development of the immunological alterations observed in individuals with Down syndrome (DS) we profiled the expression pattern of 92 immune-related genes in peripheral blood mononuclear cells (PBMC) of two different groups, children with DS and control children.
Project description:Analysis of steady-state mRNA levels in whole blood of subjects with Down syndrome (trisomy 21) and qualifying moderate-to-severe immune skin conditions. This dataset is part of the Human Trisome Project run by the Linda Crnic Institute for Down Syndrome at the University of Colorado Anschutz Medical Campus. http://www.trisome.org/
Project description:Recent research has provided evidence on genome-wide alterations in DNA methylation patterns due to trisomy 21, which have been detected in various tissues of individuals with Down syndrome (DS) across different developmental stages. Here, we report new data on the systematic genome-wide DNA methylation perturbations in blood cells of individuals with DS from a previously understudied age group-young children. We show that the study findings are highly consistent with those from the prior literature. In addition, utilizing relevant published data from two other developmental stages, neonatal and adult, we track a quasi-longitudinal trend in the DS-associated DNA methylation patterns as a systematic epigenomic destabilization with age.