Project description:This SuperSeries is composed of the following subset Series: GSE9640: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola on two different medias GSE9643: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae knockout mutants at different hybridization conditions and PMTs Keywords: SuperSeries Refer to individual Series
Project description:OsEDS1 is a key regulator of SA-mediated immunity in plants. The OsEDS1 knockout mutant (Oseds1) was characterized and shown to have increased susceptibility to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), suggesting the positive role of OsEDS1 in regulating rice disease resistance. To identify differentially regulated downstream of Oseds1, we performed transcriptome deep sequencing (RNA-seq) of wild type (ZH11) and Oseds1 inoculated with Xanthomonas oryzae pv. Oryzae (PXO99A).
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with Xanthomonas oryzae pv. oryzicola strain BLS354, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease. Examination of mRNA levels in Oryza sativa L. ssp. japonica cv. Nipponbare leaves at 48 hours after inoculation with Xanthomonas oryzae pv. oryzicola strain BLS354 with three biological replicates compared to three replicates of mock inoculated O. sativa as the control.
Project description:Transcriptional profiling of DSF regulon under iron starvation in Xanthomonas oryzae pv. oryzicola (Xoc; BXOR1) using wild type, rpfF mutant and rpfF mutant with complementing plasmid pSC9. Cell-cell signalling mediated by quorum sensing molecule known as Diffusible signalling factor (DSF) is required for the virulence of Xanthomonas group of plant pathogens. The transcriptional profiling in this study is to elucidate the role of DSF in iron acquisition under the iron limitting environment which would lead to successful colonization and pathogenesis inside host. Agilent one-color experiment, Organism: Xanthamonus oryzicola, (AMADID-041087) Genotypic Technology Pvt. Ltd. designed Custom Xanthamonus oryzicola 8x15k Gene expresssion Array, Labeling kit: Agilent Quick-Amp labeling Kit (p/n5190-0442)
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with Xanthomonas oryzae pv. oryzicola strain BLS354, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease.
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with 10 geographically diverse strains of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease.
Project description:We performed RNA-Seq of leaves of Oryza sativa L. ssp. japonica cv. Nipponbare 48 hours after inoculation with 10 geographically diverse strains of Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak. Results provide insight into the molecular basis of bacterial leaf streak, particularly the role of transcription activator-like effectors in the disease. Examination of mRNA levels in Oryza sativa L. ssp. japonica cv. Nipponbare leaves at 48 hours after inoculation with 10 strains of Xanthomonas oryzae pv.oryzicola with three biological replicates for each compared to three replicates of mock inoculated O sativa as the control
Project description:Transcriptional profiling of DSF regulon under iron starvation in Xanthomonas oryzae pv. oryzicola (Xoc; BXOR1) using wild type, rpfF mutant and rpfF mutant with complementing plasmid pSC9. Cell-cell signalling mediated by quorum sensing molecule known as Diffusible signalling factor (DSF) is required for the virulence of Xanthomonas group of plant pathogens. The transcriptional profiling in this study is to elucidate the role of DSF in iron acquisition under the iron limitting environment which would lead to successful colonization and pathogenesis inside host.
Project description:In this study, using a novel dual RNA-seq approach we monitored the global transcriptional changes in real time of Xanthomonas oryzae pv. oryzicola and rice during infection. Our transcriptome maps of Xoc strains infecting rice provide mechanistic insights into the bacterias adaptive responses to the host niche, with modulation of central metabolism being an important signature. The study also uncovers that infected rice responds by substantial alteration of the cell wall, stress and structural proteins.
Project description:Transcription profiling of the DSF regulon in Xanthomonas oryzae pv. oryzae (Xoo) using wild type and the rpfF mutant. Cell-cell signaling mediated by the quorum sensing molecule known as Diffusible Signaling factor (DSF) is required for virulence of Xanthomonas group of plant pathogens. DSF in different Xanthomonas and the closely related plant pathogen Xylella fastidiosa regulates diverse traits in a strain specific manner. The transcriptional profiling performed in this study is to elucidate the traits regulated by DSF from the Indian isolate of Xanthomonas oryzae pv. oryzae, which exhibits traits very different from other Xanthomonas group of plant pathogen. In this study, transcription analysis was done between a wild type Xanthomonas oryzae pv. oryzae strain and an isogenic strain that has a mutation in the DSF biosynthetic gene rpfF.