Project description:Purpose: The goals of this study are to compare the phenotypic, transcriptomic, trafficking and functional atttibutes of Influenza-experienced circulating or resident memory phenotype cells from the spleen or lung-draining mediastinal lymph nodes. Results: Following read alignment, gene expression profiles were computed using featureCounts. Filtering and visualization of differentially expressed genes with a log2fold change >1.5<-1.5 and a p value of less than 0.05 were identified using Partek GS software and for some figures values from Partek were normalized and displayed using GraphPad Prism. Gene set enrichment and functional assignment were performed in DAVID bioinformatics resources and software from the Broad Institute.
Project description:The assignment of diffuse large B-cell lymphoma into cell-of-origin (COO) groups is becoming increasingly important with the emergence of novel therapies that have selective biological activity in germinal center B-cell-like (GCB) or activated B-cell-like (ABC) groups. The LLMPP's Lymph2Cx assay is a parsimonious digital gene-expression (NanoString) based test for COO assignment in formalin-fixed paraffin-embedded tissue (FFPET) routinely produced in standard diagnostic processes. The 20-gene assay was trained using 51 FFPET biopsies; the locked assay was then validated using an independent cohort of 68 FFPET biopsies. Comparisons were made with COO assignment using the original COO model on matched frozen tissue. In the validation cohort the assay was accurate, with only one case with definitive COO being incorrectly assigned, and robust, with >95% concordance of COO assignment between 2 independent laboratories. These qualities, along with the rapid turn-around-time, make Lymph2Cx attractive for implementation in clinical trials and, ultimately, patient management.
Project description:The aim of this experiment is to test how atypical codon assignment (in our case Ser and Leu at CUG sites) flexibility can provide an effective mechanism to alter the genetic code. We have reengineered C. albicans strains to mis-incorporate increasing levels of Leu at protein CUG sites.
2016-04-30 | E-SYBR-7 | biostudies-arrayexpress
Project description:Mode of toxic action assignment of chemicals
Project description:The assignment of diffuse large B-cell lymphoma into cell-of-origin (COO) groups is becoming increasingly important with the emergence of novel therapies that have selective biological activity in germinal center B-cell-like (GCB) or activated B-cell-like (ABC) groups. The LLMPP's Lymph2Cx assay is a parsimonious digital gene-expression (NanoString) based test for COO assignment in formalin-fixed paraffin-embedded tissue (FFPET) routinely produced in standard diagnostic processes. The 20-gene assay was trained using 51 FFPET biopsies; the locked assay was then validated using an independent cohort of 68 FFPET biopsies. Comparisons were made with COO assignment using the original COO model on matched frozen tissue. In the validation cohort the assay was accurate, with only one case with definitive COO being incorrectly assigned, and robust, with >95% concordance of COO assignment between 2 independent laboratories. These qualities, along with the rapid turn-around-time, make Lymph2Cx attractive for implementation in clinical trials and, ultimately, patient management. The retrospective study included RNA extracted from 119 clinical samples.
Project description:As 5-15% of higher eukaryotes genes are transcription factors (TFs), the lack of transcription factor binding site (TFBS) information for most factors in most organisms limits the study of gene regulation. Here we describe a next-generation sequencing method, DNA affinity purification (DAP-Seq), an in vitro gDNA/TF interaction assay that produces whole-genome TFBS annotation for any factor from any organism. Like ChIP-Seq, DAP-Seq resolves TFBS as discrete peaks at genomic locations which allows for accurate motif prediction direct assignment of functionally relevant target genes, and shows better overlap with ChIP-Seq peaks than indirect motif assignment approaches. We applied DAP-Seq to a set of 50 transcription factors in eight Arabidopsis thaliana and one Zea Mays families to gain novel biological insight into TFBS architectures, functions, evolution and methylation-sensitivity. Overall, DAP-Seq offers a low-cost high-throughput approach to identify TFBS in native sequence context for any organism complete with all DNA chemical modifications.