Project description:Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms [Forsythia viridissima]
Project description:Green hydra (Hydra viridissima) harbors endosymbiotic Chlorella and have established a mutual relation. To identify the host hydra genes involved in the specific symbiotic relationship, transcriptomes of intact H. viridissima colonized with symbiotic Chlorella strain A99, aposymbiotic H.viridissima and H. viridissima artificially infected with other symbiotic Chlorella were compared by microarray analysis. The results indicated that genes involved in nutrition supply to Chlorella were upregulated in the symbiotic hydra. In addition, it was induced by supply of photosynthates from the symbiont to the host, suggesting cooperative metabolic interaction between the host and the symbiotic algae.
Project description:Comparative transcriptome analyses of three medicinal Forsythia species and prediction of candidate genes involved in secondary metabolisms [Forsythia viridissima var. koreana]
Project description:Here, de novo transcriptome assemblies for leaf and flower tissues of Forsythias were performed, resulting in 81913 unigenes of F. suspensa, 88491 unigenes of F. viridissima and 69458 unigenes of F. koreana (F. viridissima var. koreana). Classification of the annotated unigenes by gene ontology terms and KEGG pathways was used to explore transcriptomic differences among the Forsythias. Orthogroup was introduced to compare expression levels of unigenes in tissues from different species, which unveiled that three leaf tissues of Fosythias were closely correlated based on expression values of orthologous unigenes. Showing high expression mainly in leaves of F. viridissima and F. koreana, candidate homologs for genes involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were determined in these transcriptome assemblies.
Project description:Here, de novo transcriptome assemblies for leaf and flower tissues of Forsythias were performed, resulting in 81913 unigenes of F. suspensa, 88491 unigenes of F. viridissima and 69458 unigenes of F. koreana (F. viridissima var. koreana). Classification of the annotated unigenes by gene ontology terms and KEGG pathways was used to explore transcriptomic differences among the Forsythias. Orthogroup was introduced to compare expression levels of unigenes in tissues from different species, which unveiled that three leaf tissues of Fosythias were closely correlated based on expression values of orthologous unigenes. Showing high expression mainly in leaves of F. viridissima and F. koreana, candidate homologs for genes involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were determined in these transcriptome assemblies.
Project description:Here, de novo transcriptome assemblies for leaf and flower tissues of Forsythias were performed, resulting in 81913 unigenes of F. suspensa, 88491 unigenes of F. viridissima and 69458 unigenes of F. koreana (F. viridissima var. koreana). Classification of the annotated unigenes by gene ontology terms and KEGG pathways was used to explore transcriptomic differences among the Forsythias. Orthogroup was introduced to compare expression levels of unigenes in tissues from different species, which unveiled that three leaf tissues of Fosythias were closely correlated based on expression values of orthologous unigenes. Showing high expression mainly in leaves of F. viridissima and F. koreana, candidate homologs for genes involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were determined in these transcriptome assemblies.
Project description:Individual miRNA analyzed were successfully constructed through nanostring technology of a total of 577 mouse miRNAs in 20 number of SHAM mice and 20 number of Tannerella forsythia infected mice, which have been euthanized on the end of 16 weeks infection study.