Project description:Fermented dairy milks have been associated with many health benefits including the regulation of metabolic dysfunction. Different circulating clinical biomarkers have been used to explore the effect of fermented milks on metabolic health but the development of whole blood transcriptomics has recently been proposed as a source of novel biomarkers for this health outcome. In a randomised, cross-over study, we evaluate the changes in the whole blood transcriptome after the intake of a probiotic yoghurt compared to a milk acidified with gluconic acid in seven healthy young men. The effects of the dairy foods on whole blood gene expression were assessed at three time points during a 6 h postprandial test (800g single dose) and in the fasting state after a daily intake of the products over two-weeks (400g/d). RNA was extracted from Paxgene ® whole blood samples and sequenced on the Illumina HiSeq platform.
2018-02-28 | GSE98645 | GEO
Project description:Probiotic Isolation
| PRJNA885481 | ENA
Project description:Development of technologies for new fermented functional food products
| PRJNA736961 | ENA
Project description:Identification and isolation of new probiotics
| PRJNA730567 | ENA
Project description:Identification and isolation of new probiotics
| PRJNA778643 | ENA
Project description:Compliance in Probiotic Products
Project description:The survival of probiotics could be strongly enhanced by delivery vehicles, but the mechanism was unknown. In this study, whole genome microarray technology was used to detect the gene expression profiles of probiotic Lactobacillus casei Zhang in the absence and presence of fermented milk in simulated gastrointestinal tract. The results showed the gene expression profiles were significantly different under these two different conditions. The change of the gene expression profile may be helpful to comprehend the role of delivery vehicles in enhancing the survival of probiotics. Twelve samples of bacterial cells in the absence and presence of fermented milk were collected at 3 h in simulated gastric juice, 4 h and 8 h in intestinal juice, 2 biological replicates were obtained in each time point. The average of the normalized expression values of the 2 biological replicates for each probe was regarded as the expression value of a predicted gene. To identify the expression pattern of each gene across different treatments, n-fold change ratios were calculated for every gene in pure L. casei Zhang versus L. casei Zhang in fermented milk.